Particle physics - written test n. 2

14th January 2020

Solve the following three problems (including the extra questions only if desired). The test is passed with a score of at least 15 points.

Problem 1 (5 points)

A photon collides with a proton of mass M at rest in the lab frame. What is the necessary minimal energy for the photon such that in the final states we will have a neutral pion of mass M_0 in addition to the original proton?

(Extra question, +2 points)

What is the necessary minimal energy for the photon such that in the final state there are n neutral pions in addition to the original proton?

Problem 2 (10 points)

Consider the flavour SU(3) baryon decuplet.

- (a) Draw the decuplet in the (I_3, Y) plane, indicating the name of the particles and their quark content (5 points).
- (b) For each particle calculate $I(I+1)-Y^2/4$, where I is the total isospin, show that it is a linear function of Y, $I(I+1)-Y^2/4=\alpha Y+\beta$, and find the coefficients α,β (5 points).

Problem 3 (10 points)

Let $\phi(x)$ be a real scalar field and $\psi(x)$ a Dirac spinor field in the usual 3+1 dimensions, and assume that their interaction is described by the Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 + \bar{\psi} (i \gamma^{\mu} \partial_{\mu} - M) \psi + g \phi \bar{\psi} \psi \,.$$

(The last term is often called Yukawa interaction.) Determine the following:

- (a) mass dimension of m, M and g (4 points);
- (b) the expression for the vertex in Feynman diagrams, including
 - i) its graphic representation (3 points);
 - ii) the associated factor (3 points).

(Extra question, +4 points)

Determine the mass dimension of g in general D (time+space) dimensions.