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1 Introduction

Elementary particles are (or more precisely are thought to be) the fundamental, indivisible con-
stituents of all matter. Elementary particles come in different types, characterised by several
identifying properties such as mass, spin, electric charge, and others to be discussed later. An
important characteristic is that all particles of the same type are identical, and so indistinguish-
able. The aim of elementary particle physics is to study their properties and their interactions,
through which macroscopic objects are ultimately built.

The idea that matter is made of indivisible constituents dates back to ancient Greece, most
notably to the philosophical work of Democritus and his master Leucippus (around 6th century
b.C.). Although this idea proved to be right in the end, it was obviously not based on experi-
mental results, and came from metaphysical speculation only – elementary particle metaphysics,
if you wish. The first scientifically sound proposal in this direction came from Dalton and his
atomic theory at the beginning of the 19th century. Dalton proposed that chemical elements are
composed of basic building blocks, the atoms (meaning “indivisible” in Greek), which cannot
be further divided into smaller pieces, but can be combined forming the various chemical com-
pounds. Contrary to Democritus, he proposed his theory to explain established empirical facts,
and the theory was corroborated by further experiments, which lead to its refinement. This is
how science works, in a nutshell.

In that day and age, atoms were what we would call elementary particles, from which the
whole of the matter is built up. As it turned out, however, the indivisible atoms were in
fact divisible, and made up of “more elementary” particles. The concept of elementary particle
seems therefore to be dependent on the historical period. . . and in a certain sense it is. Quantum
mechanics tells us that to investigate length scales of order ∆x we need momenta of the order
of ∆p ∼ ℏ/∆x. The scale down to which one can reach at a given time in history is thus limited
by the available energy. While relating elementarity and time is just a (not so funny) pun,
relating it to energy makes more sense: if we are interested in a chemistry problem, then it is
appropriate to treat atoms as elementary particles. If we are interested instead in problems at
higher energies, then the internal structure of the atoms will play a role, and we will have to use
electrons, protons and neutrons as elementary particles, and at yet higher energies the internal
structure of protons and neutrons will also show up.

Of course, strictly speaking “elementary” does not come in degrees: something is either
elementary or it is not. At the same time, the depth at which we have studied the structure of
matter is limited by our current technological capabilities, and what is considered elementary
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today might not be so tomorrow. Same goes for what we think is right or wrong.1 Again, this
is science at work.

It is worth to get to the list of what are currently considered the elementary particles through
a brief historical survey. A nice summary of when and how elementary particles were discovered
can be found, e.g., in Griffiths’ book [1]. Here I will adopt the point of view of what was
considered elementary in a certain period of time.

1.1 Brief history of particle physics

The birth of elementary particle physics can be considered the discovery of the electron (e) by
Thomson in 1897. Making experiments with cathode rays he noticed that they were deflected
by a magnetic field, which hinted at them actually being streams of light, negatively charged
particles (from now on, the absolute value of the electron charge will define the unit of electric
charge). He determined their speed using (perpendicular) crossed electric and magnetic fields,
tuning them so that the stream was undeflected, and making use of the formula v/c = E/B
where c is the speed of light. From the deflection of the particles in the presence of the electric
field only, he determined their charge-to-mass ratio, and he estimated their energy from the
heat generated by the stream when hitting the anode. Electrons had to come from somewhere,
and where else but from atoms? Moreover, their properties turned out to be independent of
the material of which the cathode was made, which meant that they had to be present (and
the same) in every atom.2 Since atoms are electrically neutral, that required the presence in
the atom of something positively charged. In the period 1908-1917 Rutherford (also making
use of the experimental results of Geiger and Marsden) developed his planetary model of the
atom, with the electron orbiting around the positively charged nucleus, which contained almost
all the mass of the atom. He later understood that each unit of positive charge in a nucleus
corresponded to one hydrogen nucleus, which came to be known as proton (p). There was still a
mismatch between the mass of the nucleus and what would have been expected from its charge:
this was settled by the discovery of the neutron (n) by Chadwick in 1932. The neutron forms
part of the nuclei, has almost the same mass as the proton, but is electrically neutral.

At this point in time the elementary particles where only four. Indeed, besides the three
discussed above, it had become clear that as far as subatomic physics was concerned, the elec-
tromagnetic radiation had to be considered as formed by particles, called photons (γ). Only in
this way it was possible to explain the photoelectric effect (Einstein, 1905) and the scattering of
light on particles at rest (Compton, 1926). Photons are electrically neutral and massless; their
energy is proportional to the frequency of the radiation. In terms of photons, the electromag-
netic interaction can be seen as the exchange of a stream of photons between the interacting,
electrically charged objects.

It still remained to be explained how protons could stay together in nuclei despite the elec-
tric repulsion (and how neutrons could be bound there, too). This required the existence of a
new interaction, called strong interaction. This interaction had to be strong to overcome elec-
tromagnetic repulsion, but at the same time short-ranged, as it had no effects at macroscopic
scales. In analogy with the photon, Yukawa proposed in 1934 that the strong interaction was

1This does not apply to wearing socks with sandals: that is and always will be an abomination which deserves
a special place in Hell.

2The idea that the atom was not indivisible was actually not new. We tend to forget that often a new
understanding of Nature does not come out of the blue, but develops in an already fertile soil.
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mediated by a new type of massive particle which he called meson. The term was coined to dis-
tinguish it from the proton and the neutron, which were referred to as baryons (from the Greek
“heavy”). Toghether, baryons and mesons form the class of strongly interacting particles, the
hadrons (from the Greek “strong”). From the range of the force, Yukawa estimated the meson
mass to be about one sixth of the proton mass. The quest for Yukawa’s meson began, and by
1937 a particle with approximately the appropriate mass was found in cosmic rays (Anderson
& Neddermeyer, 1936). . . except it was not Yukawa’s meson! More detailed studies of cosmic
rays in 1946-47 (Powell, Lattes, Occhialini, 1947) led to conclude that there were two types of
particles in the cosmic rays: one heavier and with a shorter lifetime, which disintegrated almost
entirely in the upper atmosphere, and which was the true Yukawa meson, and one lighter and
with a longer lifetime, which was what had been initially and incorrectly identified as the meson,
but which actually interacted very little with the nuclei. The first particle is the pion (π), while
the second one is the muon (µ), into which the pion decays. While the pion was the missing
piece in the strong interaction puzzle, the muon was not expected (and Rabi famously asked:
“Who ordered that?”): it appeared as a sort of heavier electron, and so was grouped with it in
the family of leptons (from the Greek “light”).

In the meantime, it had become clear that each particle had a “twin”, called antiparticle, with
the same mass but opposite electrical charge. In fact, after having been predicted theoretically
by Dirac, in 1931 the antielectron, or positron, had been observed experimentally by Anderson.
The number of elementary particles had grown suddenly by a factor of approximately 2 (some
particles, like the photon, are their own antiparticles), even before observations, which came
later: in 1955 and 1956 the antiproton and the antineutron3 were also observed, by Segré and
Chamberlain, and by Cork, respectively.

Not all problems had been solved: it remained to be explained why the energy spectrum of
the electron in nuclear β decays was extended and not point-like. Energy conservation requires
that in this case at least one more particle has to be produced, which in the case at hand had
to be neutral and (at least almost) massless. This led to the neutrino (ν) hypothesis proposed
by Pauli in 1930. Direct observation of neutrinos proved to be extremely difficult, since these
particles interact very weakly, and it had to wait until the mid-fifties (Reines & Cowan, 1956).
Several neutrino experiments were successfully conducted in the ’50s and early ’60s, and actually
revealed that neutrinos and antineutrinos were not the same particle, and, on top of that, that
there were two types of neutrinos, one corresponding to the electron (νe) and one corresponding
to the muon (νµ). Neutrinos were included in the lepton family. At this point the interaction
responsible for β decays and for processes involving neutrinos, the weak interaction, had still to
be properly understood, but we will return on this later.

Everything seemed now to be in place, except possibly for the apparent uselessness of the
muon. But the story was far from over. In fact, in 1947 the existence of a new charged particle
with mass between that of the pion and that of the proton was confirmed: this was the kaon
(K), the first of what will become known as “strange” particles. Being affected by the strong
interactions, the kaon was included in the hadron family, more precisely in the meson subfamily.
More hadrons (both “strange” and not strange) were observed in the following years, leading to
a whole new “zoo” of particles. This apparent chaos could finally find some ordering principle
when Gell-Mann and (independently) Zweig proposed the quark model in 1964. In this model,
mesons and baryons are not elementary, but instead bound states of quarks and antiquarks,

3For a particle to coincide with its own antiparticle, electric neutrality is a necessary but not sufficient condition:
the neutron is different from the antineutron. More on this later.
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leptons

particle charge mass spin

e− -1 0.511 MeV 1
2

µ− -1 105.7 MeV 1
2

τ− -1 1.777 GeV 1
2

νe 0 < 2.2 eV 1
2

νµ 0 < 0.17 MeV 1
2

ντ 0 < 15.5 MeV 1
2

quarks

particle charge mass(*) spin

u 2
3 2.2 MeV 1

2
d -13 4.7 MeV 1

2
s -13 96 MeV 1

2
c 2

3 1.28 GeV 1
2

b -13 4.18 GeV 1
2

t 2
3 173.1 GeV 1

2

Table 1: Matter particles. Quark masses are the current quark masses in the MS scheme at
µ ≈ 2GeV for light quarks, and at the quark mass for the heavy quarks.5

a new type of (more. . . ) elementary particles. More precisely, mesons are formed by a quark
and an antiquark, and baryons by three quarks (and antibaryons by three antiquarks). Quarks
were proposed to exist in three different types: up (u), down (d), and strange (s). This could
neatly accomodate all the plethora of strongly interacting particles that had been discovered
(and actually correctly predict the existence of a new one, the Omega baryon). The story of
the success of the quark model is however a quite intricate one, and quite surprisingly what
convinced most of the community of its validity was the discovery of a fourth type of quark in
1974, the charm (c).

From here on, a further lepton, the tau (τ) was discovered in 1975 by Perl;4 the corresponding
neutrino was immediately theorised, but observed only in 2000 by the DONUT experiment at
Fermilab. A further quark was observed in 1977 by Lederman (see footnote 4), the bottom or
beauty (b), which led to theorise a sixth one, the top or truth (t), finally observed in 1995 by the
CDF and DØ experiments at Fermilab.

To complete the story, the analogues of the photon in the weak and strong interactions
have to be identified. In fact, the success of Quantum Electrodynamics (QED), based on the
interpretation of the photon as the mediator of the electromagnetic interaction, stimulated
attempts at modeling the weak and strong interactions in a similar way. Moreover, the success
of the quark model made clear that the pion could not be considered the fundamental quantum of
the strong interactions. This role was taken over by the so-called gluons (g); the theory describing
the interaction of quarks and gluons is known as Quantum Chromodynamics (QCD), for reasons
to be explained later. As for the weak interactions, their mediators are the intermediate vector
bosons, namely theW (charged) and Z (neutral) bosons, experimentally observed in 1983 by the
UA1 and UA2 experiments at CERN. The last brick is the so-called Higgs boson (H), observed
in 2012 by the ATLAS and CMS experiments at CERN, whose role will be discussed later. The
theory describing weak interactions, and also unifying them with electromagnetism, is known
as the Glashow-Salam-Weinberg model. Together with QCD, it forms the Standard Model of
particle physics. The hypothetical quantum of gravitational interactions, the graviton (G) has
not been experimentally observed yet.

4 This should be understood in the sense of Perl and collaborators: the era of solitary discoveries in particle
phyisics was long gone by then.

5If you do not know what this means do not worry, it is just to make clear that quark masses are a much more
delicate issue than it might seem.
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particle charge mass spin

γ 0 0 1
W± ±1 80.4 GeV 1
Z 0 91.2 GeV 1
H 0 125 GeV 0

g 0 0 1

Table 2: Interaction particles.

1.2 The elementary particles

Let us now summarise what are the known elementary particles (at least, as of now). As it
should be clear from the brief history told above, they are organised into two big groups: matter
particles and interaction particles. They are listed in Tables 1 and 2. The elementary particles
span five orders of magnitude in mass, from the 0.5 MeV of the electron to the 170 GeV of the
top quark.

1.2.1 Matter particles

Matter particles have a common feature: they are all spin-12 fermions.6 They are further subdi-
vided into two groups, leptons and quarks, each of which is further divided into three families
(or generations).

The leptons include the electron (e−), the muon (µ−) and the tauon or tau (τ−), which pos-
sess electrical charge, and the corresponding electronic, muonic and tauonic neutrinos, which are
electrically neutral. To each particle correspond an antiparticle: the anti-electron or positron,
the anti-muon and the anti-tau, and the three anti-neutrinos, which we will collectively call
sometimes antileptons. Particle and antiparticle have the same mass and spin, but are dis-
tinguished by having opposite electric charge (for the charged ones) or opposite helicities, i.e.,
spin component in the direction of motion (for the neutrinos). Each charged lepton and its
corresponding neutrino form a family, i.e., (e−, νe), (µ−, νµ), (τ−, ντ ).

The quarks come in different kinds called flavours, named up, down, strange, charm, bottom
(or beauty) and top (or truth). Quarks are all electrically charged, and paired in families as
follows: (u, d), (c, s), (t, b). As with the leptons, to each quark is associated an antiquark.

All matter particles interact through the weak interactions, while only quarks are affected by
the strong ones. Quarks and charged leptons interact also electromagnetically, while neutrinos
do not.

1.2.2 Interaction particles

Interaction particles are all bosons. They are divided into classes according to what interaction
they mediate:

6For those who forgot. Fermions and bosons are characterised by their symmetry properties under exchange of
two of them. The state of a system of identical fermions is antisymmetric under the exchange of two of them, while
the state of a system of identical bosons is symmetric. This in particular implies that no two identical fermions
can be in the same state (Pauli’s exclusion principle), while there is no such limitation for bosons. Fermions
are particles with half-integer spin, while bosons have integer spin. The spin of a particle determines how its
states transform under rotations, or more precisely under which representation of the rotation group its states
transform. The connection between spin and statistics is a theorem in quantum field theory.
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leptons







matter families/generations

︷ ︸︸ ︷

gauge bosons

︷ ︸︸ ︷

the

God(damn)

particle

︷ ︸︸ ︷

I II III

up

2.2 MeV
2
3
1
2

u

charm

1.28 GeV
2
3
1
2

c

top

173.1 GeV
2
3
1
2

t

gluon

0

0

1 g

Higgs boson

125 GeV

0

0 H

down

4.7 MeV

− 1
3

1
2

d

strange

96 MeV

− 1
3

1
2

s

bottom

4.18 GeV

− 1
3

1
2

b

photon

0

0

1 γ

electron

0.511 MeV

−1
1
2

e

muon

105.7 MeV

−1
1
2

µ

tau

1.777 GeV

−1
1
2

τ

Z boson

91.2 GeV

0

1 Z0

electron neutrino

< 2.2 eV

0
1
2

νe

muon neutrino

< 0.17 MeV

0
1
2

νµ

tau neutrino

< 15.5 MeV

0
1
2

ντ

W boson

80.4 GeV

-1

1 W−

name of part X

mass

charge

spin X

Figure 1: “Periodic table” of elementary particles (the existence of antiparticles is understood).

• the photon γ has spin 1, is massless and electrically neutral (i.e., it does not self-interact),
and mediates the electromagnetic interactions;

• the intermediate vector bosons W± and Z have spin 1, are massive, and mediate the weak
interactions; the W ’s are electrically charged, while the Z is neutral;

• the gluons g have spin 1, are massless, and mediate the strong interactions; they are
electrically neutral.

It must be noted that the intermediate vector bosons do interact among each other and with
themselves, but not with the gluons; and that the gluons interact with themselves but not with
the intermediate vector bosons.

To these particles one has to add the Higgs boson H, which is a massive, electrically neutral
particle of spin 0, and which essentially provides the mass to all other elementary particles. It
interacts with the intermediate vector bosons but not with the photon or with the gluons (hence
these are massless).
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1.3 Natural units

You may have noticed that I have expressed the masses of particles using energy units. This is
possible because of the existence of a fundamental constant, the speed of light c, that allows to
translate masses into energies. The correct mass unit should therefore be [m] = eV/c2 (recall the
Einstein relation E = mc2). Similarly, the existence of the Planck constant ~ allows to express
times in terms of inverse energies, i.e., in units of [t] = ~/eV (recall here the relation between the
energy of a photon and its frequency, E = ~ν). Using together c and ~ we can express lengths
in units of [l] = c~/eV. Combining this with the relation between energy and mass we can
write a length in units of c~/[c2(eV/c2)] = ~/[c(eV/c2)] = ~/(c[m]). Finally, from the Coulomb
potential energy (in Heaviside-Lorentz units) U = e2/(4πr) we find [e]2 = [E][l] = [~c]. Notice
that the two constants originate respectively from special relativity and quantum mechanics. In
particle physics it is convenient to choose our system of units such that ~ = c = 1: this is the
so called system of natural units. In this system a length has dimensions of an inverse mass;
mass and energy have the same dimensions, and so do time and length; finally, electric charge
is dimensionless.

For example, the length scale associated to a particle is the Compton length λC = ~

mc ; in
natural units this is just λC = 1

m . The fine structure constant α = e2/(4π~c) is dimensionless,
and in natural units it reads simply e2/(4π).

The typical energy unit used in particle physics is the electronvolt (eV). An electronvolt eV =
1.6 · 10−19 J is the energy acquired by an electron after travelling through an electric potential
difference of one volt: this turns out to be a very practical unit in accelerator experiments.
Practical units are the megaelectronvol, MeV = 106 eV and the fermi, fm = 10−15 m. The
conversion between the two is most easily done exploiting the relation ~c ≃ 197 MeV · fm. In
natural units the left-hand side is one, so 1 fm ≈ (1/5)GeV−1.

1.4 Building up matter

From the elementary particles in Table 1, via the interactions mediated by the particles in Table
2, one can ultimately build up all the matter surrounding us, all the way from the proton to
János bácsi and Viki néni. This happens in several stages, characterised by different length and
energy scales.

The first stage is the construction of hadrons from quarks. It is a fact of life that free quarks
are not observed in Nature, but always come along bounded into mesons and baryons. This
phenomenon is known as confinement. Mesons are essentially bound states of a quark and an
antiquark, while baryons are made up of three quarks.

The lightest meson is the pion, that comes in three versions: π0, π+ and π−. The pions
are built from the lightest quarks and antiquarks, the u, d, ū and d̄, combined into states of
vanishing total spin and orbital angular momentum, so that they have spin 0. The same quark
content can lead to different mesons if quarks are in a different spin and/or orbital angular
momentum state: for example the ρ mesons have the same quark content of the pions, but in
a combination with total spin 1 and vanishing orbital angular momentum, so that they have
spin 1. Of course, other mesons can be built changing the quark content: this is the case of the
kaons, which contain a strange quark, or of the J/ψ, which is a cc̄ state.

The lightest baryon is the proton, made up of two u and a d quark, followed by the neutron
with two d and one u quark. The neutron is slightly more massive than the proton, and it
actually decays into it via β decay. The proton on the other hand is stable (and luckily so),
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quark content spin charge mass

meson

π+ ud̄ 0 +1 135MeV

π− dū 0 −1 140MeV

π0 uū, dd̄ 0 0 140MeV

ρ+ ud̄ 1 +1 775MeV

ρ− dū 1 −1 775MeV

ρ0 uū, dd̄ 1 0 775MeV

K+ us̄ 0 +1 494MeV

K− sū 0 −1 494MeV

K0 ds̄ 0 0 498MeV

K̄0 sd̄ 0 0 498MeV

J/ψ cc̄ 1 0 3.1GeV

baryon

p uud 1
2 +1 0.938GeV

n udd 1
2 +1 0.940GeV

∆+ uud 3
2 +1 1.232GeV

∆0 udd 3
2 +1 1.232GeV

Λ uds 1
2 0 1.1GeV

Table 3: Hadrons. Masses very different from quark masses (for light mesons), difference ac-
counted for by the interactions.

particle main decay mode lifetime

µ− µ− → e−νµν̄e 2.2 · 10−6s
n n→ pe−ν̄e 8.8 · 102s
π+ π+ → µ+νµ 2.6 · 10−8s
π0 π0 → γγ 8.4 · 10−17s

Table 4: Decays of unstable particles.

precisely because it is the lightest baryon: as a matter of fact, the baryon number, i.e., the
number of baryons minus the number of antibaryons, is a conserved quantity, and having no
other baryon to decay into, the proton sits quietly at the center of the hydrogen atom, or together
with other protons and neutrons7 in the nucleus of heavier atoms, guaranteeing the stability of
ordinary matter. On the contrary, there is no such a thing as a conserved meson number; in
fact, even the pion is not stable and decays (mostly) into a muon and a muonic antineutrino.
As with the mesons, heavier baryons exist with the same quark content but in different states,
and of course with different quark content. An example of the first case are the ∆+ and ∆0,
which have the same quark content as the proton and the neutron, respectively, but spin 3

2 . An
example of the second case is the Λ, which contains a u, a d and an s quark.

As mentioned above, protons and neutrons form the nuclei of atoms, where they are bound
together by the strong interaction, i.e., by the exchange of gluons. Different kinds of atoms
have different amounts of protons in their nuclei, and can occur with a different number of

7Neutrons can be stable in nuclei, although not in all of them.
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neutrons (isotopes). The rest of the atom consists of electrons, bound to the nucleus by the
electromagnetic interactions. The electron is the lightest charged particle and is stable (again,
luckily for us) thanks to conservation of electric charge. Electromagnetic interactions are also
responsible for binding atoms together in molecules, and molecules together in more and more
complicated structures, leading ultimately to apples, cows, humans, or Donald Trump.

1.5 Unstable particles and decays

The proton, the electron, the neutrinos,8 the photon and their corresponding antiparticles,
are the only stable particles.9 Other hadrons and leptons, as well as the intermediate vector
bosons,10 decay, i.e., they “break up” in various ways yielding ultimately the stable particles
listed above. The typical mean time τ that it takes for a particle to decay is called lifetime: this
is τ = t 1

2
/ ln 2 where the half-life t 1

2
is the time it takes for half of a large sample of particles to

decay. A list of the main decay modes of a few unstable particles, and the lifetimes of these, is
given in Table 4.

The meaning of lifetime is related to the empirical (approximate, but rather accurate) finding
that the decay rate (i.e., the probability of decaying per unit time per particle) of unstable
particles is independent of time (at least for sufficiently big samples). If dP is the probability
for a particle to decay over an infinitesimal time interval dt, one then writes dP = Γdt with
time-independent Γ. The quantity Γ is the decay width of the particle. Since each particle decays
independently of the others (at least for sufficiently big samples), the size N(t) of the sample as
a function of time obeys the equation

dN(t) = −ΓN(t)dt , (1.1)

and so one finds the exponential decay law

N(t) = N(0)e−Γt = N(0)e−
t
τ , (1.2)

where we have identified the lifetime τ as τ = Γ−1. The relation between τ and the half-life t 1
2

then follows. Typically, unstable particles decay through different decay modes, yielding different
final products. Each of these modes is a decay channel, and the i-th channel is characterised
by the partial width Γi, with the total width being given by Γ =

∑

i Γi. The ratio Γi/Γ is the
branching ratio (or fraction) of the i-th channel, and tells us the relative probability that the
decay will take place through channel i.

In general, not all ways of decaying are allowed, due to kinematical and dynamical con-
straints. The most important kinematical constraint stems from energy-momentum conserva-
tion. Denoting with P the four-momentum of the initial particle, of mass M , and with pi those
of the decay products, of masses mi, we have from P =

∑

i pi that

M2 = P 2 = P ·
∑

i

pi =M
∑

i

ECMi ≥M
∑

i

mi , (1.3)

8For simplicity we will treat the neutrinos as massless, which guarantees their stability, even though we know
that they are not. Nevertheless, even in this case there is a linear combination of neutrinos which is the lightest in
mass, and which is the lightest lepton: its stability is then guaranteed by lepton number conservation (see below).

9We are not including nuclei in the discussion here, since we look at them as composite particles at a higher
level. Also neutrons, which can become stable in nuclei, are not included.

10Like quarks, gluons do not exist as isolated particles.

9



beam
target

detectors

Figure 2: Setup of a fixed target experiment.

i.e., the sum of the masses of the decay products cannot exceed that of the initial particle.
Other constraints of dynamical nature come about because of how the various interactions

work, which can lead to conservation laws. Examples are conservation of electric charge, baryon
number, lepton and (approximately) lepton family number (see below).

1.6 Scattering processes

If unstable particles decay, how are we even able to know about their existence? For some of
them, we might argue that if they have been created when the Earth (or even the Universe
itself) was created, and their lifetime is long enough, then part of them might have survived this
long and can be still observed. This is the case, e.g., for the uranium nuclei. However, this does
not really answer our question: how can have they been created in the first place?

Imagine to look at an unstable particle decay, breaking up into a certain number of decay
products. If we reverse the direction of time, what we would see is a set of particles getting
closer, colliding, and building up the unstable particle. After all, the laws of physics are (to
a good extent) invariant under time reversal, and the process resulting from “projecting the
movie backwards” would be a possible physical process. Here is then our answer to our initial
question: to see unstable particles we have to create them, and this can be achieved by means
of scattering processes, in which particles are thrown at each other, and the products of the
collision are studied. If an unstable particle is created in the processes, the final products will
show its distinctive footprint.

Scattering processes are actually much more than just a tool to find out the spectrum of un-
stable particles, as they reveal important information on how the interactions between particles
work. For this reason, scattering experiments are the main type of experiment in particle phy-
isics. In this subsection I will just introduce the basic concepts, focussing on so-called fixed-target
experiments.

In a fixed-target experiment, a bunch of particles is accelerated and focussed into a beam,
which is then directed against a target, for example a thin foil of metal, at rest in the laboratory
(see Fig. 2). What comes out of the collision is carefully analysed by means of detectors placed
behind (or around) the target. The beam is characterised by the number Nb of particles that
it contains, by their velocity v, and by its cross-sectional area Ab. The target is characterised
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1

2

Figure 3: The target as seen from the beam. Target particles are the black discs, with area
corresponding to the cross section σ of the process, beam particles are the red dots. The dashed
line indicates the cross-section of the beam, of area Ab, Nb is the number of particles in the
beam, and Nt is the number of particles in the target “seen” by the beam. The beam particle
1 does not undergo scattering, while particle 2 does.

by its density and thickness, from which one obtains the number Nt of particles in that part of
the target on which the beam impinges. Experiments are typically designed so that the target
is much wider than the beam cross-section.

Since interactions are typically of short-range nature, a particle in the beam will interact with
a particle in the target only if it gets close enough to it to “feel” it. This defines a region around
the target particle (“scatterer”) in the plane orthogonal to the trajectory of the beam particle
(“projectile”) in which this trajectory has to pass, if a scattering event is to take place. From the
point of view of the beam the target looks like a two-dimensional surface with “active” points
corresponding to the scatterers, so practically the target can be imagined as being collapsed on
a two-dimensional sheet (see Fig. 3). The area of this region measures how likely it is for a
scattering event to take place, once that the technical details mentioned above about the beam
and the target are known. In fact, for sufficiently dilute beams and targets, interactions will
involve at most one projectile and one scatterer, and so scattering events will be independent:
their number will be proportional to the number of particles in the beam and in the target.
The proportionality factor is the ratio between the area of the “good part” of the target surface
(corresponding to the “active” area around a target particle) where the beam particle has to
impinge, and the cross-sectional area of the beam, i.e., the probability that one given particle
in the beam (that we are assuming can be found anywhere on its cross-section with uniform
probability) happens to pass nearby one given particle in the target. If the target is thin enough,
a particle in the beam will not undergo multiple scattering processes.

All in all, the number of scattering events Nevents will be proportional to Nt and to Nb

(once the whole beam has passed though the target), and inversely proportional to Ab. The
proportionality factor is the total cross section, σ, of the scattering process, as it depends

11



uniquely on the type of particles involved (besides of course the energy of the beam particles).
The cross section has dimensions of an area, and in fact measures the area of the “active” region
around the target discussed above. In formulas,

Nevents = NtNb
σ

Ab
, (1.4)

which when turned around gives the operative definition of the cross section,

σ =
Nevents

Nt
Nb

Ab

. (1.5)

For practical purposes it is convenient to elaborate on this formula. The number of particles in
the beam can be obviously expressed as the number of the particles that cross the target per unit
time, times the time it takes for the whole beam to cross the target. Assuming for simplicitly a
uniform longitudinal distribution of particles in the beam and a constant velocity v, the number
of beam particles ∆Nb crossing the target in the small time interval (t, t+∆t) are those that are
at most a small distance ∆x = v∆t away from the target. If ρb is the volume density of particles
in the beam, then ∆Nb = ρbAb∆x = ρbAbv∆t. The number of events ∆Nevents happening in
∆t will be given by Eq. (1.4) with Nb replaced by ∆Nb, and so in Eq. (1.5) we can replace
Nevents
Nb/Ab

with ∆Nevents
∆Nb/Ab

= ∆Nevents
∆tρbv

. The quantity Φ ≡ ρbv measures the number of particles of the

beam crossing the target per unit time and unit area (on the plane perpendicular to the beam
velocity), and is called the flux of the beam. We can then write

σ =
∆Nevents

∆tNtΦ
. (1.6)

i.e., the cross section is the number of scattering event per unit time, unit target and unit flux.
Both scattering and decay processes are governed by the fundamental interactions, which tell

us which processes can take place, and with what probability. The considerations above about
kinematical and dynamical constraints extend to the case of scattering processes: conservation
laws put restrictions on the allowed processes, and such laws depend on the symmetries of the
interactions. To understand how decays and scattering processes happen and which quantities
they conserve, we have to look first at how the various interactions work.

Exercise When scattering on a target particle, a projectile is either deflected (elastic scat-
tering) or involved in some inelastic process: in any case, it will be removed from the beam.
Consider a beam of Nb particles directed at a target of thickness d and density Nt/V = ρt, and
let the total scattering cross section be σ. How many particles are expected to emerge on the

other side of the target? [Answer: Nbe
− d

λ with 1
λ = σρt.]

1.7 Describing interactions: Feynman diagrams

The simplest way to describe how matter particles interact with each other is to look at inter-
actions as the exchange of the mediators of the various forces between them. The fundamental
process consists therefore in a matter particle emitting or absorbing an interaction particle. If
the interacting particle is then absorbed by a second matter particle, or had been emitted by
that, then it mediates the interaction between the two particles. Actually it is not really well
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Figure 4: The fundamental vertices involving matter particles. Top left: electromagnetic vertex.
Top right: strong interaction vertex. Bottom left: weak interaction vertex, charged current.
Bottom right: weak interaction vertex, neutral current.

defined which particle is the emitter and which is the absorber: we are dealing with very short
time scales and we cannot really observe the exchange process. Luckily enough, this does not
matter: all that matters is that an interaction particle has been exchanged.

The fundamental process described above is called an interaction vertex. All the quantities
that are conserved at a vertex will be automatically conserved by the interaction: these include
for example energy and momenta, angular momentum, and the electric charge, which are con-
served by all interactions. Other quantities may or may not be conserved at a certain type of
vertex.

Let us begin with the electromagnetic interactions. The fundamental vertex is shown in the
top left panel of Fig. 4: an electron (but it could be any other charged lepton or a quark) enters,
emits or absorbs a photon, and exits. Time is assumed to flow upwards. This is the only basic
process in QED. A diagram like this is known as Feynman diagram, and there is much more to
it than simply a pictorial representation of a process - as we will learn in due time.

For strong interactions a similar process occurs, with a quark emitting or absorbing a gluon,
without changing its flavour. This is shown in the top right panel of Fig. 4. The main dif-
ference is that quarks and gluons carry an extra degree of freedom, called colour, and the
emission/absorption of a gluon can change the colour of the quark. Overall, though, colour is
conserved at the vertex, as the difference (if any) is carried away by the gluon. Quarks come
in three colours, and there are eight type of gluons (of the nine possible colour combinations,
that corresponding to gluons that leave all the colours unchanged does not appear). Besides
this process there are two other processes in QCD involving only gluons (Fig. 5).
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Weak interactions between matter particles proceed through two possible processes: an
electron emits/absorbs a W− and turns into an electronic neutrino (lower left panel of Fig. 4);
or it emits/absorb a Z and exits (lower right panel of Fig. 4). The first process involves a charged
current, while the second one involves a neutral current. Charged currents involve leptons in
the same family, so a muon will turn into a muonic neutrino and a tau will turn into a tauonic
neutrino. There is clearly another set of possible processes, that in which an antilepton emits
a W+ and turns into an antineutrino of the appropriate kind, but this is just the antiparticle
version of the first process (see below). Also in this case there are other vertices not involving
matter particles, but only intermediate vector bosons and photons (Fig. 6).

Vertices involving antiparticles are constructed by drawing an antifermion travelling forward
in time like a fermion travelling backwards in time. This corresponds to reflecting the vertices
of Fig. 4 vertically. Look at Fig. 7 if this sounds confusing. The vertices of Figs. 4 and 7 can be
“rotated” leading to Fig. 8: here a fermion and an antifermion enter the process.

The lepton-lepton-boson vertices of Figs. 4, and their reflected and rotated versions in Figs. 7
and 8, allow to deduce an important conservation law. In Fig. 4 a lepton enters and a lepton exits;
in Fig. 7 an antilepton enters and an antilepton exits; in Fig. 8 a lepton and an antilepton enter,
and no lepton/antilepton exits. Since electrons couple through the charged weak interaction
only to electronic neutrinos, and similarly for the muon and the tau, the total number of lepton
of a given family is conserved separately. More precisely, if we assign family lepton numbers
Le,µ,τ = 1 to e−, µ−, τ− and νe, νµ, ντ , respectively, and Le,µ,τ = −1 to e+, µ+, τ+ and ν̄e, ν̄µ, ν̄τ ,
respectively, then the total Le,µ,τ is the same before and after the process. Nowadays it is
known that the total family lepton numbers are actually not exactly conserved. Indeed, this
would be the case if neutrinos were exactly massless. For nonzero neutrino masses, it is possible
for them to “oscillate” changing their type, e.g., from electronic to tauonic, thus violating family
lepton number conservation. Such oscillations have actually been observed. On the other hand,
the total lepton number L = Le + Lµ + Lτ remains conserved also in the presence of neutrino
oscillations.

We have not discussed yet weak vertices involving quarks. These are almost exactly the
same as those involving leptons, but there is a twist. The process involving the weak neutral
current works exactly in the same way. The exact analogue of the leptonic process involving the
weak charged current would be that only quarks in the same family are coupled: for example,
a u quark emitting a W+ and turning into a d. This interaction would change the flavour of
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Figure 6: Interaction vertices involving only intermediate vector bosons and photons.

quarks but only within a family, and it would therefore be possible to define a conserved family
quark number in analogy with what we discussed above for leptons. It turns out, however, that
after emitting a W+ the up quark does not turn simply into a down quark, but into a linear
combination of down, strange and bottom. In other words, the quark mass eigenstates do not
coincide with the weak eigenstates. If this did not happen, it would be impossible to explain
the hadronic decays of the kaons, where a strange (anti)quark turns into a down (anti)quark.
The unitary matrix that determines how flavours mix is called the Cabibbo-Kobayashi-Maskawa
(CKM) matrix.

Although there is no exactly conserved quark family number, there is an approximately
conserved quark flavour number, which does not change as long as weak interactions are not
involved in the process: flavour is in fact exactly conserved by strong and electromagnetic
interactions. When weak interactions are also considered this is not true anymore due to flavour

quantity conserved\interaction EM strong weak

lepton type yes – no
flavour yes yes no

lepton family yes – yes (if massless)

quark family yes yes no
lepton number yes – yes
quark number yes yes yes

Table 5: Conservation laws - part 1.
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mixing, but the total number of quarks minus that of antiquarks, Q, is still exactly conserved.
This is usually express in terms of conservation of the baryon number B, i.e. the number of
baryons minus the number of antibaryons. Indeed, the number of baryons is just three times
the number of quarks, and the number of antibaryons three times the number of antiquarks.
Each meson contributes zero to the total quark number, as it involves a quark and an antiquark.
Therefore, Q = 3B, and the two conservation laws are equivalent. Baryon number is usually
traded for one of the conserved flavour quantum numbers, while another one is traded for electric
charge. Denoting with f and f̄ the number of quarks and antiquarks of flavour f , respectively,
we clearly have B =

∑
(f − f̄)/3, while for the electric charge Q = (2/3)(u − ū + c − c̄ + t −

t̄) − (1/3)(d − d̄ + s − s̄ + b − b̄). Strangeness is defined, for historical reasons, as S = s̄ − s,
while for charm and beauty one has more logically C = c− c̄ and B = b− b̄. A summary of the
conservation laws related to particle types is given in Table 5. An obvious consequence of these
conservation laws is that if an interaction conserves a certain particle number, then it cannot be
responsible for decays in which this number is violated: for example, strong interactions cannot
be responsible for strangeness-changing processes.

The diagrams of Figs. 4 to 8 describe how the interaction works at the most fundamental
level, but cannot represent a true physical process due to energy-momentum conservation. To
describe an actual physical process we have to properly combine two or more of them. Let us
begin with the electromagnetic interactions. If we combine two electromagnetic vertices together
like in the left panel of Fig. 9, then we are representing the scattering process of two electrons
(Møller scattering). The second panel correspond to the same process: since electrons are
indistinguishable, we cannot possibly know which one is coming out of the process going (say)
left, and so we have to take into account both possibilities. In this case there is no problem with
the emission/absorption process: while energy and momentum are conserved, the exchanged
photon is not on its mass shell, i.e., p2γ 6= 0. Internal lines in Feynman diagrams represent

16



�

p1 − p′1

~p1s1

~p2s2

~p ′

1s
′

1

~p ′

2s
′

2

→

�

p1 − p′2

~p1s1

~p2s2

~p ′

1s
′

1

~p ′

2s
′

2

→

Figure 9: Møller scattering.

�

e−

e−

γ

e+

e+

�

e− e+

γ

e− e+

Figure 10: Bhabha scattering.

�

e−

γ

e+

γ

�

γ

e−

γ

e+

�

γ

e−

e−

γ

Figure 11: Left: e−- e+ annihilation. Center: pair production. Right: Compton scattering.

virtual particles, not real particles, which do not have to be on shell. External lines, on the
other hand, represent the real particles that initiate or come out of a physical process.

If we now reflect the right fermionic line in the first panel, we obtain a diagram describing
electron-positron scattering (Bhabha scattering) via the exchange of a photon, see the left panel
of Fig. 10. This kind of process can take place also through a different route: the electron and
the positron can annihilate into a photon, and a new pair will be created from the photon (right
panel of Fig. 10).

There are three more ways to combine two QED vertices. These are shown in Fig. 11, and
correspond (from left to right) to electron-positron annihilation, electron-positron pair creation,
and Compton scattering.

It is important at this point to make it clear that Feynman diagrams provide only a schematic
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description of the process from the visual point of view, not an accurate depiction of particle
trajectories. The notion of time that we are using is also somewhat misleading. Consider the
diagram of Fig. 12: does it represent a different process than the one in the right panel of
Fig. 10? The answer is no: all that matters is the topology of the diagram, and of course the
content of the initial and final states as encoded in the external lines, i.e., the “before” and
“after” of the process, which determine what kind of reaction we are considering. When exacly
the annihilation of the first pair happens, and when the creation of the second pair happens, are
actually meaningless questions.

There is of course an infinity of ways in which one can combine an indefinite number of
vertices. A couple of examples is shown in Fig. 13. The left panel shows the light-by-light
(Delbrück) scattering process, while the right panel corresponds again to electron-electron scat-
tering, with the exchanged photon turning temporarily into an electron positron pair. As we will
learn later, diagrams have different “weights”, i.e., are more or less important in the description
of a process. Each vertex contributes a factor e to the weight of a diagram, so the diagrams
of Figs. 9, 10 and 11 are all proportional to e2 = 4πα (in natural units), with α ∼ 1/137 the
fine structure constant. The diagrams of Fig. 13 are proportional to α2, and so are relatively
suppressed. This means that to describe a given process to a given precision we will need only a
limited number of diagrams. The factor weighting each vertex is called coupling constant: there
is an electromagnetic one (i.e., the absolute value of the electron charge), a strong one, and
two weak ones (one for the charged process and one for the neutral process), which are however
related to the electromagnetic coupling through two functions of a single parameter, known as
Weinberg angle, as a consequence of electroweak unification.

Let us consider now processes mediated by the weak interactions. The simplest such process
is the decay of a muon (Fig. 14, left): µ− → e−νµν̄e (notice the conservation of both the
electronic and the muonic lepton numbers). Except for the presence of spectator quarks, the
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same diagram describes the beta decay of the neutron (Fig. 14, center). The same diagram with
electron and electron neutrino replaced by muon and muonic neutrino describes the main decay
mode of the charged pion (Fig. 14, right). Reflecting vertically the diagram for the β decay of
the neutron we obtain the diagram for the process of antineutrino capture, ν̄e+p→ e++n. The
decays of the neutron and of the pion represent leptonic decays of hadrons, but weak interactions
are responsible also for non-leptonic decay modes. For example, the Λ0 (uds) decays to p+ π−

via the emission of a W− from the s quark, which turns into a u; the quarks produced in the
decay W− → ūd correspond precisely to the content of π−, while the remaining quarks can
form a proton. In this case the strangeness S of the baryon (which is the number of strange
antiquarks minus the number of strange quarks) changes by ∆S = 1. Hadrons can also decay
via electromagnetic interactions, for example Σ0(uds) → Λ0(uds)γ, which has ∆S = 0 (but
∆I = −1, where I is the isospin: more on this later). Weak interactions contribute also to
processes where the flavour content of a baryon does not change. For example, the ∆+ (uud)
can decay into n+π+ via the emission of a W+ from one of the u quarks, which then turns into
a d quark, and subsequent decay of the W+ into u+ d̄: the d̄ combines with a u to form a π+,
while the remaining quarks form a neutron. However, the same decay can take place via strong
interactions, with a dd̄ pair created by a gluon emitted by one of the initial quarks. This process
has actually a much larger weight, and so it is the one actually governing the decay process.

To conclude this subsection, it is worth discussing an important detail concerning strong
interactions. Although the fundamental interaction vertices involve quarks and gluons, the
phenomenon of confinement implies that the correct effective description of strong interactions
in terms of exchange of particles should be done using hadrons. The lightest mediator is therefore
not the massless gluon, but the massive (although relatively light) pion.

1.8 Range and strength of the interactions

Now that we know (at least qualitatively) how interactions work, we can estimate their range
and strength theoretically. We begin by discussing the range, i.e., “how far they are felt” in
space. The basic idea is that the range of interaction is the inverse of the mass of the lightest
mediator. This can be understood at a very qualitative level using the uncertainty relation
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for energy, ∆E∆t ≥ ~

2 : the exchange of a particle of mass M requires a “violation” of energy
conservation over a time ∆t ∼ ~/∆E ∼ ~/(Mc2), over which it can travel a distance not larger
than ∆x = c∆t (if it moved at the speed of light). All in all, ∆x ∼ ~/(Mc), which is the
Compton length of the mediator. This argument is clearly a back-of-an-envelope calculation for
several reasons, so let us try to make it more quantitative.

We begin by noticing that in the nonrelativistic, free-particle case the fundamental dynamical
equation, i.e., the Schrödinger equation, can be derived from the relation between energy and

momentum, E = ~p 2

2m , by upgrading the classical variables to operators acting on the particle’s

wave function via the replacements E → i∂t and ~p→ −i~∇,

E =
~p 2

2m
⇒ i∂tψ(t, ~x) = −

~∇ 2

2m
ψ(t, ~x) . (1.7)

Energy and momenta are replaced by time and space derivatives, i.e., by the generators of
temporal and spatial translations. In the relativistic case the energy-momentum relation is
instead E2 − ~p 2 = M2 which leads, after the same substitutions for E and ~p, to the Klein-
Gordon equation, which is essentially the relativistic version of the Schrödinger equation:

(✷+M2)ψ(t, ~x) = (∂2t − ~∇2 +M2)ψ(t, ~x) = 0 . (1.8)

Unfortunately, for a correct description of relativistic particles it is not enough to simply make
relativistic the energy-momentum relation but, as we will see in due course, it is also necessary
to change how particles are described. In fact, the nonrelativistic wavefunction ψ has to be
replaced with a quantum field Ψ̂, i.e., a field operator acting on the Hilbert space of the particle.
A quantum field obeying the Klein-Gordon equation describes the propagation of free particles of
massM . Perhaps the simplest way to get accostumed to this is to recall that as an equation for a
classical field in the case M = 0, Eq. (1.8) is simply Maxwell’s equation for the electromagnetic
field in the vacuum, i.e., ✷Aµ = 0. Upon quantisation, the electromagnetic field describes
massless quanta - the photons. For nonzero M and upon quantisation one would therefore
expect this equation to describe the propagation of particles of mass M - and that is precisely
what it does.

If we now consider the massive case and follow the reverse route, i.e., we go back to the
classical case, Eq. (1.8) will describe the propagation of some classical field mediating some
interaction, in the same way as the photon field does with the electromagnetic one. Therefore,
solving the Klein-Gordon equation as an equation for a classical (relativistic) field will tell us
what the interaction mediated by our massive particle looks like when the classical limit is
approached, which corresponds to the case of the exchange of a large number of particles. In
particular, we can determine the classical potential corresponding to the massive particle by
solving the Klein-Gordon equation in the static (i.e., time-independent) case in the presence of a
fixed source (much in the same way as we obtain the Coulomb potential putting a static electric
source somewhere in space):

(−~∇2 +M2)u(~x) = gδ(~x) , (1.9)

where g is the “charge” of the source. This equation is most easily solved after a Fourier
transformation to momentum space,

u(~x) =

∫
d3p

(2π)3
ei~p·~xũ(~p) . (1.10)

20



In momentum space we find

(~p 2 +M2)ũ(~p ) = g ⇒ ũ(~p ) =
g

~p 2 +M2
. (1.11)

Going back to coordinate space we get (r = |~x|)

u(~x) =

∫
d3p

(2π)3
ei~p·~x

g

~p 2 +M2
=

g

(2π)2

∫ ∞

0
dp p2

∫ +1

−1
dz eiprz

1

p2 +M2

=
g

(2π)2ir

∫ ∞

0
dp p (eipr − e−ipr)

1

p2 +M2
=

g

(2π)2ir

∫ ∞

−∞
dp p eipr

1

p2 +M2

=
g

(2π)2ir
(2πi)e−Mr iM

2iM
=

g

4πr
e−Mr ,

(1.12)

where we have made use of the residue theorem to compute the last integral. The potential
u(r) = g

4πr e
−Mr is the Yukawa potential, and it clearly has range 1/M . Putting back the

appropriate factors of ~ and c we get

range =
~

Mc
=

~c

Mc2
=

197 MeV · fm
M [MeV/c2]MeV

=
197

M [MeV/c2]
fm . (1.13)

Plugging in the W mass, MW = 80GeV/c2, we find

rangeweak =
197

8 · 104 fm = 2.5 · 10−3 fm . (1.14)

As we have remarked above, due to confinement the actual mediator of the strong force is the
pion, and so (using Mπ0 = 135MeV/c2)

rangestrong =
197

135
fm = 1.5 fm , (1.15)

which is actually the typical scale of nuclei. The inverse of the range of interaction gives an
estimate of the typical energy scale of the strong and weak interactions, respectively O(100MeV)
and O(100GeV). Electromagnetic interactions are mediated by massless photons, which entails
an infinite range: indeed, in this limit the Yukawa potential reduces to the Coulomb potential
∼ 1/r.

We now turn to the strength of the various interactions. A simple way to estimate the
relative strength of forces is to compare the lifetimes of particles decaying through different
interactions. As a matter of fact, Feynman diagrams provide more than a schematic description
of physical processes. We have already said that each diagram has an associated weight: such
a weight, which is technically called amplitude, allows to compute the probability of the cor-
responding process, roughly via the relation decay width/scattering rate (probability per unit
time) ∝ |amplitude|2. In the case of a decay process we then obtain the decay width Γ = τ−1.
The simplest diagrams for decay processes typically involve two vertices, and so Γ is typically
proportional to the fourth power of the coupling constant (the weight factor coming with each
vertex), and so

g41
g42

∼ τ2
τ1

⇒ g21
g22

∼
√
τ2
τ1
. (1.16)
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Typical decay times for strong interactions are in the range 10−23 ÷ 10−20s, those for weak
interactions are in the range 10−13÷103s, while for electromagnetic interactions they are 10−16s.
To compare strong and weak interactions we can for example compare the decay of the ∆0, which
takes place through strong interactions with τ∆ = 5.6 · 10−24s, to that of the neutron, which
takes place through weak interactions with τn = 880 s:

g2w
g2s

∼
√
τ∆
τn

∼ 10−13 . (1.17)

To compare electromagnetic and weak interactions we can for example compare the electromag-
netic decay of the neutral pion π0 → γγ (τπ0 = 8.4 ·10−17s), with the weak decay of the charged
pion π+ → µ+νµ (τπ+ = 2.6 · 10−8s). We find

g2w
g2em

∼
√
τπ0

τπ+

∼ 10−4 ÷ 10−3 . (1.18)

Different estimates will be obtained comparing different processes, but the bottom line is that
the strong force is stronger than the electromagnetic one which is stronger than the weak one.

A similar kind of estimate can be done looking at scattering processes. In that case, the cross
section of a process is proportional to the absolute value squared of the amplitude associated to
Feynman diagrams, and therefore, to lowest order, to the fourth power of the coupling constant.
We then find that the stronger the interaction, the larger the typical cross section for a processes
mediated by it.

It is worth pointing out at this point that the reason why weak interactions are much weaker
than the electromagnetic ones is not really due to a weaker coupling constant. In fact, in the
Glashow-Weinberg-Salam theory that describes weak and electromagnetic interactions, the weak
and electromagnetic coupling constants, gw and gem = e, are related, and actually e2 ∼ 0.2g2w!
The main difference between the two interactions is that while the photon is massless, the
intermediate vector bosons are very massive. As we will learn later, the internal boson lines in
the Feynman diagrams correspond to factors (p2 −m2)−1, where p and m are respectively the
four-momentum and the mass of the boson. Effectively, the exchange of a W boson between a
pair of electrons with energies much lower than theW mass comes with a factor GF = g2w/M

2
W ∼

10−5 GeV−2: this is the coupling constant actually estimated above. Weak interactions are
therefore weak not because of a small coupling, but because of the large mass of the mediators.
This applies as long as we work at energies well below the W± mass, when the p2 term can be
neglected compared to the mass in the internal boson lines. When the two terms are comparable
the weak interaction is actually much stronger than the electromagnetic one.

A historical note: the quantity GF is known as the Fermi constant, and it appeared in
the first theory of β decays proposed by Fermi in 1933. In that theory the proton, neutron,
electron and neutrino interacted via a four-fermion vertex, with coupling constant GF . From
the modern perspective, the four-fermion vertex can be considered as an effective description
valid at energies much lower than MW . The fact that GF has dimensions of some inverse power
of mass indicated that the four-fermion interaction could not be the final word, and that a “more
fundamental” theory of weak interactions had to exist (although it took forty years to find it).
The reason for this will be discussed much later. Notice that combining the measurement of GF
and assuming that the weak coupling is comparable to the electromagnetic one (as one would
expect assuming unification) one finds MW ∼

√

4πα/GF ∼ 30GeV, which is only 2.5 times
smaller than the actual value.
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1.9 How to tell the nature of a process: decays and conservation laws

We have discussed above how diagrams built using vertices from the various interaction can
describe different physical processes. Is there a way to tell what kind of interaction will be
responsible for a given decay process even before drawing the relevant diagrams? The answer
is certainly yes: if we see a photon, or a neutrino, coming out of a process we can be sure that
those processes involve the electromagnetic interaction or the weak interaction, respectively. If
we see pions there are good chances that we are dealing with a strong process, but we cannot
be sure, as will become clear below. However, not always there is a clear signature, and in those
cases we have to rely on other clues. We have already seen one of these, namely the lifetime
of a decaying particle. There is another thing we can look at: the symmetry properties of a
particular process.

As we have already mentioned, in general, unless prevented by some conservation law, parti-
cles decay into lighter particles. Certain conservation laws are valid for all interactions, namely
conservation of energy, momentum, and angular momentum, as they are just consequences of
translation and rotation invariance. For example, as we proved above, energy conservation im-
plies that for a decay process to be allowed the mass of the products cannot exceed the mass
of the initial particle. These conservation laws imply kinematical constraints on the decay pro-
cesses. Other conservation laws are instead of dynamical nature, deriving from the detailed
nature of the interactions discussed in the previous section. We have seen there that all inter-
actions conserve electric charge, baryon number and lepton number. We have also seen that
lepton family numbers are approximately conserved by all interactions. Other conservation laws
are valid for certain interactions and not for others, and this allows to distinguish what is the
interaction responsible for a given process. In particular, conservation laws related to the type of
particles have been listed in Table 5. We want to remark that although we began the discussion
with decay processes, of course conservation laws do apply to scattering processes as well.

We want to give now a brief overview of the symmetries of the various interactions starting
from the strong ones, which are the “most symmetrical” of the interactions. As we have already
remarked, strong interactions conserve flavour, i.e., the number of quarks minus the number
of antiquarks of a certain type is conserved in a process. The number of u and d quarks can
be traded for baryon number and electric charge, which we have already said are conserved by
all interactions. The strangeness S (number of strange antiquarks minus number of strange
quarks - the choice of signs looks strange, indeed, but that is how it came about historically),
charm (number of charm quarks minus charm antiquarks), and so on are conserved also by
electromagnetic interactions, but not by the weak interactions, which allow flavour to change.
For this reason, pions can appear in the final state due to a flavour-changing weak current: for
example in the decay of neutral kaons: in that case, it is the violation of strangeness (as well as
the long lifetime) that tells us that we are not dealing with strong interactions.

Strong interactions also conserve approximately a quantity called isospin. For reasons that
we will discuss later, one can assign an isospin I to multiplets of light hadrons (i.e., those made
of u, d and s), within which they are distinguished by a second number I3. All other particles
are assigned I = 0. Does the thing look somehow familiar? As a matter of fact isospin shares a
lot of properties with spin, although it is entirely unrelated to it. For example, the three pions
form a triplet to which it is assigned the value I = 1, with I3 equal to their charge. The proton
and the neutron form a doublet with I = 1

2 and I3 = Q − 1
2 . The K+ and K0 form again a

doublet with I = 1
2 and I3 = Q − 1. The ∆ resonances ∆++, ∆+, ∆0 and ∆− form a quartet
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quantity strong em weak

Q y y y
B y y y
L y y y
I y n n
S y y n
P y y n
C y y n

T/CP y y n
CPT y y y

Table 6: Conservation laws - part 2.

with I = 3
2 . In general I3 = Q − 1

2(B + S), so I3 is automatically conserved since Q,B and
S are. However, also I2 = I21 + I22 + I23 is conserved, and as we will see this has interesting
consequences for scattering processes. Notice that both electromagnetic and weak interactions
do not conserve this quantity (pion decay modes should convince you of that).

There are three important discrete symmetries that we have to discuss, namely parity P (i.e.,
spatial inversion), charge conjugation C (exchange of particle with antiparticle) and time reversal
T . As it turns out, strong and electromagnetic interactions conserve all three of them, while
weak interactions do not conserve any. At the same time, the combination CPT is conserved
by all the interactions: this is actually a theorem in quantum field theory, so that conservation
of T is equivalent to conservation of CP . The situation is summarised in Table 6. For example,
if we see a process that does not conserve neither isospin nor strangeness we know that it is
happening via weak interactions; if it conserves everything, then it is taking place through the
strong interactions.

It is worth spending a few words on the meaning of parity non-conservation. Weak interac-
tions are not invariant under parity, which means that the physical phenomena that we see in the
mirror are not always possible physical phenomena in our, real, world. The strongest evidence
of parity non-conservation is the fact that all neutrinos are left-handed and all antineutrinos
right-handed, which means in practice that they have helicity −1 and +1, respectively. Helicity
is the spin component in the directions of motion, h = ~s·~p

|~p | , which for massless particles is a
Lorentz-invariant quantity. Under parity helicity changes sign, so that in the mirror we would
see a right-handed neutrino, which does not exist (or at least has never been observed) in our
world. Right after the suggestion of Lee and Yang that parity might not be conserved in weak
interactions (1956), the first observation of parity non-conservation was in the decay of cobalt-
60, 60Co → 60Ni+e−+ ν̄e. Here the electron is emitted preferentially in the direction opposite to
the spin of the initial nucleus (Wu et al., 1956). The picture provided by a mirror parallel to the
nuclear spin axis is obtained by combining parity and a 180◦ rotation around an axis orthogonal
to the mirror: the spin is reversed, and electrons look like being preferentially emitted in the
direction of the spin. Shortly thereafter, it was observed that in the decay of polarised muons,
the electron distribution is proportional to 1 − 1

3 cos θ, with θ the angle between the electron
direction and the muon polarisation (Garwin et al., 1956). Under parity the spin of the muon
does not change, but the momentum of the electron is reversed, and thus it become angularly
distributed according to a 1 + 1

3 cos θ law. By the way, this is the law governing the angular
distribution of the positron in the decay of the antimuon, and this shows that also charge con-
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jugation invariance is violated in muon decay. Combined parity and charge conjugation seems
still a good symmetry, but as it turns out it is also violated by weak interactions.

There is another quantity that we have seen it is conserved at interaction vertices, and that is
colour. What are the visible consequences of this conservation law? Actually none: confinement
of quarks and antiquarks in hadrons come with the property that hadrons have net colour zero,
and so the conservation law boils down to zero colour in, zero colour out. Although confinement
is not (yet) proved within QCD, and the detailed mechanism through which it works has not
yet been unveiled, nevertheless there is an argument that helps in explaining it. The (spin-
independent part of the) potential between a quark and an antiquark has been found to be of
the form

Vs = −4

3

αs
r

+ σr , (1.19)

in the limit of infinite quark masses, where αs =
g2s
4π with gs the strong coupling constant, and

σ the string tension. As the quark and the antiquark are pulled apart, the energy stored in
the system keeps increasing, and to separate them to an infinite distance (therefore liberating
them) would require an infinite amount of energy. This would be strictly true if the quarks were
static, i.e., with infinite mass. Since their mass is finite, at some point the energy stored in the
system is sufficient to create a qq̄ pair out of the vacuum, with the new particles binding to the
old ones. This process is called string breaking.

2 Symmetries

In this section we discuss in some detail the concept of symmetry in a physical theory and its
consequences.

Quoting almost verbatim from Weinberg’s book [2], a symmetry is a change in the experi-
menter’s point of view that does not change the results of possible experiments. Let us explain
this in more detail. Consider two experimenters O and O′ making measurements on the same
physical system. They subscribe to the same operative rules concerning the measurement of the
various observables, but they use in general different reference frames, so that in general they
find different values for the various physical quantities, thus producing two different descrip-
tions of the same system. In mathematical terms, this means that they will assign to the system
different representative vectors in the corresponding Hilbert space. This is because the expec-
tation values of the operators corresponding to the physical observables (which are the same
operators for both observers) are different, reflecting the different results they have obtained.
More precisely, O and O′ will assign respectively the rays11 R and R′ to the state of the system.
Although the two descriptions are in general not the same, for certain pairs of observers they
will be equivalent, i.e., the physical laws implied by the measurements will be the same for both
observers. In other words, it will be impossible for an observer to determine her or his reference
frame using only her or his measurements. If two observers give equivalent descriptions, then
the set of possible physical states that they can observe must be the same. Mathematically, the
set of rays that they can assign to the system must be the same. Moreover, if O sees two states
of the system as different, so must do O′.

Establishing a relation between the two descriptions corresponds to defining a mapping M
from the space of rays H = {R} to itself. To each ray observed by O there corresponds one and

11A ray is an equivalence class of vectors ψ ∈ H with respect to the equivalence relation {ψ ∼ φ if ψ = eiζφ}.
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only one ray observed by O′. Moreover, every ray corresponds to a possible observation of O′, so
the mapping must be surjective (onto). Finally, diffent rays must be mapped into different rays,
since observing that two states of the system are different does not depend on the observer. We
then have a mapping M : H → H which is injective (one-to-one) and surjective, and therefore
an invertible mapping. In a more direct way: if the two observers are equivalent, and there is
a map from O to O′, then there must also be an inverse mapping from O′ to O, for otherwise
they would not be equivalent.

Suppose that we now perform an experiment on the system, and we see it transition from a
state to another. The two observers will see the transitions

O : Ri −→ Rf , O′ : R′
i −→ R′

f , (2.1)

occurring with probabilities P and P ′,

P = (Ri · Rf )
2 , P ′ = (R′

i · R′
f )

2 , (2.2)

where
R1 · R2 = |(ψ1, ψ2)| , (2.3)

with ψ1,2 any normalised vector belonging to R1,2. Since O and O′ are looking at the same
physical process, the transition probabilities they observe must be the same, P = P ′, and so

Ri · Rf = R′
i · R′

f . (2.4)

Since R′
i,f = MRi,f , we have that

Ri · Rf = (MRi) · (MRf ) . (2.5)

A theorem due to Wigner guarantees that an invertible transformation M on the space of rays
H that conserves probabilities can be implemented as a transformation on the space of vectors
H that is either linear and unitary or antilinear and antiunitary:

linear and unitary : U(αψ + βφ) = αUψ + βUφ , (Uψ,Uφ) = (ψ, φ) ,

antilinear and antiunitary : T (αψ + βφ) = α∗Tψ + β∗Tφ , (Tψ, Tφ) = (ψ, φ)∗ .
(2.6)

Wigner’s theorem implies that, without loss of generality, we can restrict our search for sym-
metry transformations, relating two equivalent observers, looking only at the set of unitary and
antiunitary mappings of the Hilbert space of the system onto itself. For a proof of the theorem,
confer [2].

Here is a brief detour on unitary and antiunitary operators. Unitary and antiunitary trans-
formations are by definition norm-preserving and onto transformations, meaning that they i)
preserve the norm ‖ψ‖ of vectors and ii) have the whole Hilbert space as their image: they only
differ in being linear or antilinear. Property i) implies U †U = T †T = 1: this follows from the
rightmost column of Eq. (2.6), which in turn is a consequence of norm preservation and of the
polarisation identity,

4(ψ, φ) = ‖ψ + φ‖+ ‖ψ − φ‖+ i‖ψ − iφ‖ − i‖ψ + iφ‖ . (2.7)

Here the dagger denotes the adjoint of an operator, defined in the linear and antilinear case
respectively as

(ψ,Uφ) = (U †ψ, φ) , (ψ, Tφ) = (T †ψ, φ)∗ . (2.8)
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Property ii) implies that UU † = TT † = 1: indeed, since for every ψ there is a φ such that
ψ = Uφ, then ψ = U(U †U)φ = (UU †)Uφ = (UU †)ψ. The same argument applies to T .
Conversely, if U †U = UU † = 1 and T †T = TT † = 1 for linear U and antilinear T , then it
follows norm preservation (from the first identity), and the trivial identity ψ = UU †ψ = U(U †ψ)
implies that these transformations are onto.

What we discussed so far were the kinematical aspects of a symmetry, but we demand more
from it: we want the physics to be the same for both observers. We then need that the dynamical
evolution of a physical system be governed by the same laws for both observers, or stated
differently we want that the equations of motion have the same form for both observers, i.e., they
are invariant in form. If the dynamical evolution of the system is the same for both observers,
it follows that the transformed of the evolved is equal to the evolved of the transformed: this
entails that the Hamiltonian of the system is the same for both observers, and so is the physics.

Suppose for generality that our symmetry transformation be time-dependent, being repre-
sented by a time-dependent operator M(t). What we request is that

M(t)U(t)ψ(0) = U(t)M(0)ψ(0) , (2.9)

where the temporal evolution of the system is given by the unitary operator U(t) = e−iHt with
H a time-independent Hamiltonian, and ψ(0) is the state vector at t = 0 for the observer O.
Eq. (2.9) expresses precisely that the transformed of the evolved is equal to the evolved of the
transformed. Since this has to hold for any initial state, it follows that

M(t)U(t) = U(t)M(0) ⇒M(t) = U(t)M(0)U(t)† . (2.10)

Why does it have to be so? In general we can write

M(t)U(t)ψ(0) =M(t)U(t)M(0)†M(0)ψ(0) = U(t)M(0)ψ(0) , (2.11)

where U(t) provides the unitary temporal evolution of the system as seen by the observer O′.
If U(t) is the same operator as U(t), then the temporal evolution of the system obeys the same
laws for both observers, and all that change is the initial condition, i.e., the state vector at t = 0,
which is different for the two observers because the results of their measurements are. If we were
to do an experiment as observer O starting with ψ(0), and another experiment as observer O′

starting with ψ(0) (which means that O would use the vector M(0)†ψ(0) instead), then the
results obtained would be the same for the two observers in the two (different!) experiments.
In general, however, U(t) differs from U(t). We can obtain U(t) by writing down the differential
equation it obeys, and imposing the initial condition U(0) = 1. We have

dU(t)
dt

=
dM(t)

dt
U(t)M(0)† +M(t)(−iHU(t))M(0)†

= −i
(

M(t)HM(t)† + i
dM(t)

dt
M(t)†

)

U(t) ≡ −iHM (t)U(t) ,
(2.12)

where the time-dependent Hermitian operator HM (t) is the Hamiltonian for O′ (given that H
is the Hamiltonian for O). Hermiticity follows from the fact that M(t) is norm-preserving and
onto:

0 =
d

dt
1 =

d

dt
[M(t)M(t)†] =

d

dt
[M(t)]M(t)† +M(t)

d

dt
[M(t)† , (2.13)
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so that [i(dM(t)/dt)M(t)†]† = −iM(t)(dM(t)†/dt) = i(dM(t)/dt)M(t)†. The solution of
Eq. (2.12) is the time-ordered exponential of HM (t),

U(t) = Texp

{

−i
∫ t

0
dt′HM (t′)

}

≡
∞∑

n=0

(−i)n
∫ t

0
dt′1

∫ t′1

0
dt′2 . . .

∫ t′n−1

0
dt′nHM (t′1)HM (t′2) . . .HM (t′n)

=
∞∑

n=0

(−i)n
n!

∫ t

0
dt′1

∫ t

0
dt′2 . . .

∫ t

0
dt′nT

(
HM (t′1)HM (t′2) . . .HM (t′n)

)
,

(2.14)

where the time-ordered product of operators is defined by placing the operators with decreasing
time from left to right,

T (A(t1) . . . A(tn)) = θ(t1 − t2) . . . θ(tn−1 − tn)A(t1) . . . A(tn) + permutations . (2.15)

Clearly, if HM (t) = H then U(t) = U(t) (they solve the same differential equation with the
same initial condition); conversely, if U(t) = U(t) for all times then also their derivatives are
equal, and so HM (t) = H. The two temporal evolutions will be the same if and only if the
Hamiltonians HM (t) and H are the same. If this is the case, then

H =M(t)HM(t)† + i
dM(t)

dt
M(t)† ⇒ −i[H,M(t)] =

dM(t)

dt
, (2.16)

and this is solved by

M(t) = e−iHtM(0)eiHt = U(t)M(0)U(t)† ⇒M(t)U(t) = U(t)M(0) . (2.17)

Therefore, saying that the temporal evolution is the same for both observers is equivalent to
saying that they use the same Hamiltonian to describe the system, and in turn this is equivalent
to state that the evolved of the transformed is the transformed of the evolved. Eq. (2.17) also
tells us that the dependence of the transformation M(t) on time has to be entirely determined
by the Hamiltonian of the system, with no room for some extra explicit dependence.

There is an important structure underlying the set of symmetry transformations of a physical
system. If M1 and M2 are (possibly time dependent) symmetry transformations, so is their
composition M = M2M1. Indeed, the product of unitary and/or antiunitary operators is still
either unitary or antiunitary, and moreover

M(t) =M2(t)M1(t) = U(t)M2(0)M1(0)U(t)† = U(t)M(0)U(t)† . (2.18)

Such a composition is associative, i.e., ifM3 is another symmetry transformation thenM3M2M1 =
M3(M2M1) = (M3M2)M1. The identity transformation is obviously a symmetry, and symmetry
transformations are invertible (they are unitary or antiunitary transformations in the Hilbert
space, but they were already invertible at the level of rays). The symmetry transformations of
a physical system form therefore a group.

In general, symmetries are classified in two big families, namely continuous and discrete
symmetries: in the first case there is a continuous family of symmetry transformations depending
on some real parameter, in the second case the transformation is “isolated”. If M = M(α) is
an element of a continuous family of symmetry transformations dependent on some parameter
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α and connected to the identity, M(0) = 1, then it has to be unitary. Indeed, since f(α) =
(M(α)ψ,M(α)φ) has to be equal to (ψ, φ) or (ψ, φ)∗, it must be a constant and so f(α) =
f(0) = (ψ, φ).

Let us now make our life simpler, and let us focus on time-independent symmetry transfor-
mations. From Eq. (2.17) we find [U(t),M ] = 0 at all times, and so taking the time derivative
we find

[H,M ] = 0 . (2.19)

A time-independent transformation is therefore a symmetry if it commutes with the Hamiltonian.
Let us focus on a continuous family of symmetry transformationsM(α) forming a one-parameter
group,12

M(α1)M(α2) =M(α1 + α2) , (2.20)

with M(0) = 1. Setting α2 = α and making α1 → dα infinitesimal, and expanding in dα, we
find

M(dα)M(α) =M(α+ dα) ,
(

M(0) + dα
dM

dα
(0)

)

M(α) =M(α) + dα
dM

dα
(α) ,

dM

dα
(0)M(α) =

dM

dα
(α) .

(2.21)

This differential equation is easily solve to give

M(α) = exp

{

α
dM

dα
(0)

}

= exp

{

iα(−i)dM
dα

(0)

}

= exp {iαQ} . (2.22)

SinceM(α) is unitary, it follows that Q = Q† is self-adjoint. SinceM(α) is a symmetry for all α,
we can take the derivative of 0 = [H,M(α)] with respect to α at α = 0 to find [H,Q] = 0. This
means that Q is a conserved physical quantity that can be diagonalised simultaneously with
the Hamiltonian. To better appreciate the meaning of what a conserved quantity is, it is useful
to switch from the Schrödinger picture used so far, in which observables are time-independent
and state vectors depend on time, to the Heisenberg picture in which state vectors are time-
independent and observabels depend on time. This is done by rewriting the expectation value
of an observable as follows,

〈Q〉ψ(t) ≡ (ψS(t), QSψS(t)) = (ψS(0), U(t)†QSU(t)ψS(0)) = (ψH , QH(t)ψH) , (2.23)

where ψ = ψS(0) = ψH is the state vector at t = 0 in the Schrödinger picture, and the
time-independent state vector in the Heisenberg picture, while Q = QS = QH(0) is the time-
independent observable in the Schrödinger picture and the observable at t = 0 in the Heisenberg
picture. The time-dependent quantities are ψS(t) = U(t)ψ and QH(t) = U(t)†QU(t). Clearly,
the expectation value of the observable is the same in both pictures at all times. From its
definition, one sees that QH(t) obeys the following equation of motion, Q̇(t) = dQ(t)/dt =
i[H,Q(t)], so if [H,Q] = 0 then [H,Q(t)] = 0 and Q(t) = Q. Independently of what picture
one is using, for conserved quantities one has 〈Q〉ψ(t) = 〈Q〉ψ(0). Examples of continuous

12For a one-parameter group we require in general that M(α1)M(α2) = M(f(α1, α2)) for some function f .
Under reasonable smoothness conditions, one can always choose the parameterisation such that Eq. (2.20) holds,
and that α = 0 corresponds to the identity. See, e.g., Ref. [3].
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transformations are translations and rotations, to which correspond respectively the conserved
four-momentum and angular momentum.

The construction above obviously does not apply to discrete symmetries, but there are
nevertheless conservation laws associated with them. Discrete symmetries include most notably
parity (P ), charge conjugation (C), and time reversal (T ). In the following subsection we discuss
them in some detail.

2.1 Free particles: discrete symmetries

We have discussed above the issue of symmetry on general grounds, without specifying a physical
system. We now specialise to the case of free particles, i.e., localised objects travelling on straight
lines at constant speed. This choice is made both because of its simplicity, and because of its
practical relevance. As a mtter of fact, the typical high-energy experiment consists in taking
two bunch of particles and shooting them at each other. In the initial stages of the experiments
these particles are far away from each other, so not interacting yet, and when measurements
are done on the final products of the process these are again far away from each other, so not
interacting any more. This means that to a very good approximations these experiments involve
free particles both in the initial and in the final state.

A free particle is characterised by its type, as defined by its mass m, spin s, electric charge
q and possibly other conserved (and compatible) charges, like e.g. baryon number and lepton
family number, plus its energy E, momenta ~p and the component of the spin in some prescribed
direction, conventionally taken to be the third, or z, component, i.e., sz. These observables con-
stitute a complete set; energy is actually determined from the momenta through the dispersion
relation E2 = ~p 2 +m2. In denoting the state vector of a particle we usually put mass and the
other defining observables under the label of the particle type, and further specify its momenta
and third component of the spin. Using Dirac notation, we would write, e.g., for a neutral pion
state |~p;π0〉 (there is no spin here), for a proton state |~p, sz; p〉, and so on. Other notations might
be used, depending on what one wants to emphasise.

We now discuss the effect of the discrete symmetries P , C, and T on the free particle states.

2.1.1 Parity

Parity (P ) consists in the change of the sign of all the spatial coordinates of our reference frame.
In non-relativistic quantum mechanics, the effect of this transformation on the state of a particle
is simply to change its wave function as Pψsz(~x) = ψsz(−~x), with spin being unaffected. In the
relativistic case, however, we cannot use wave functions in coordinate space to describe our
system. Nonetheless, we can define the parity transformation on states by observing that under
the required change in our reference frame, all the components of the momentum of a particle
will change sign, while angular momenta (and spin in particular) will remain unchanged. We
must then have for the state of a particle of type α with momentum ~p and z-component of the
spin sz,

P |~p, sz;α〉 = ηα| − ~p, sz;α〉 , (2.24)

where P denotes the unitary or antiunitary operator implementing the parity transformation on
the Hilbert space of the particle. The quantity ηα is a phase factor named intrinsic parity, which
does not change the physical content of a parity transformation, but that has to be included
for generality. If P is a symmetry, then a consistent assignment of phases in Eq. (2.24) can be
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made. In the Heisenberg picture, in which the quantum states are given once and for all, and for
all observers, the effect of symmetry transformations is shifted on the operators. In this picture
one then finds for the momentum and spin operators

P †~pP = −~p , P †~sP = ~s . (2.25)

We have not decided yet if parity has to be realised in the Hilbert space of particles as a unitary
or an antiunitary transformation. We now argue that the unitary option must be chosen. The
reason for this is physical, and comes from the requirement of invariance PU(t) = U(t)P : this
implies P †U(t)P = U(t), and so for infinitesimal t we find P †iHP = iH. For linear unitary P we
find [P,H] = 0, but for antilinear antiunitary we would have instead PH +HP = {P,H} = 0,

so that to every state ψE with energy E it would correspond a state ψ
(P )
E = PψE with energy

Hψ
(P )
E = HPψE = −PHψE = −Eψ(P )

E . Since negative energy particle states are not found in
nature, we are forced to choose P to be unitary and commuting with the Hamiltonian. This
means in particular that H and P can be diagonalised simultaneously.

The assignment of intrinsic parities is in general not unique: if there is a continuous group
of phase transformations generated by some operator Φ that is a symmetry of the system, then
we can redefine parity to be P ′ = PeiΦ: this is still a symmetry which does what parity has to
do on physical states. If we limit ourselves to a world in which only strong and electromagnetic
interactions are present, and the only matter particles are the up quark, the down quark, the
electron, and their antiparticles, then there are three such generators, namely the electric charge
Q, the baryon number B and the lepton number L, so that we can fix the phases of, say, the
proton, the neutron and the electron to 1. If P (0) is the initial definition of the parity operator,

with corresponding intrinsic parities η
(0)
α , then setting P = P (0)ei(αB+βL+γQ) we can choose α,

β and γ such that
proton: ηp = η(0)p ei(α+γ) = 1 ,

neutron: ηn = η(0)n eiα = 1 ,

electron: ηe = η(0)e ei(β−γ) = 1 .

(2.26)

All the other intrinsic parities are now fixed by consistency. In general, we can choose arbitrarily
one intrinsic parity for each conserved quantity: if we add, say, the muon to our particle zoo, then
we can fix its intrinsic parity to 1 using the muonic lepton number. For truly neutral particles
like, e.g., the photon or the neutral pion, the intrinsic parity cannot be redefined through a
phase transformation, and therefore carries a genuine intrinsic meaning.

From its definition, the parity operator is such that P 2 is just a phase transformation of each
state. If this transformation belongs to a continuous set of phase transformation symmetries
like the ones described above, then it is possible to redefine it such that P 2 = 1. This is the
case in the Standard Model, and so we can take without loss of generality η2α = 1, i.e., ηα = ±1.
The reason is the existence of a sufficient number of conserved charges, and the absence of
self-conjugate fermions. In fact, quantum field theory imposes that the intrinsic parities of a
particle α and its antiparticle ᾱ be related as ηαηᾱ = 1, if they are bosons, and ηαηᾱ = −1 if
they are fermions. For self-conjugate bosons, whose intrinsic phase cannot be redefined by a
phase transformation, this does not contradict P 2 = 1. For a self-conjugate fermion (a Majorana
fermion), one would find instead ηα = ±i, so that P 2 6= 1. However, such particles have never
been observed so far.
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It is possible to assign intrinsic parities to particles empirically, using conservation of parity
in a physical process, i.e., that parity is a symmetry (of course, when this applies) and the
conventionally chosen values. Consider scattering or decay processes of the form

a b→ c d , a→ b c . (2.27)

In a first approximation, we know that the transition probability for these processes are obtained
from the interaction Hamiltonian (i.e., the full Hamiltonian H minus the free part H0) via the
relations

transition probability ∝ |〈c d|HI |a b〉|2 , |〈b c|HI |a〉|2 . (2.28)

The very fact that a process happens implies that these matrix elements are nonzero.13 Con-
sider states with well-defined energy and orbital angular momentum, instead of momentum
eigenstates. We know from quantum mechanics that for these states P |ℓℓz〉 = (−1)ℓ|ℓℓz〉. If P is
a symmetry of H, then since it is a symmetry of H0 we have that [P,HI ] = 0, and so (omitting
all irrelevant quantities from the notation)

0 = 〈ℓ′, ℓ′z; c d|[P,HI ]|ℓ, ℓz; a b〉 = [(−1)ℓ
′

ηcηd − (−1)ℓηaηb]〈ℓ′, ℓ′z; c d|HI |ℓ, ℓz; a b〉 ,
0 = 〈ℓ, ℓz; b c|[P,HI ]|a〉 = [(−1)ℓηbηc − ηa]〈ℓ, ℓz; b c|HI |a〉 ,

(2.29)

where in the case of a decay process we work in the rest frame of the decaying particles, so
that there is no orbital angular momentum. Since the matrix elements of HI are nonvanishing,
Eq. (2.29) yields the relations

(−1)ℓ
′

ηcηd = (−1)ℓηaηb , (−1)ℓηbηc = ηa . (2.30)

Using the conventional intrinsic parities and those that have already been determined, we can
go on and assign an intrinsic parity to one of the particles involved in the process.

To see how things work in practice, let us consider an example, that of the parity of the
charged pion. The relevant physical process is that of pion capture by a deuteron (d), which is a
bound state of a proton and a neutron, d = (pn), with orbital angular momentum ℓd = 0. The
intrinsic parity of the deuteron is easily determined as ηd = ηpηn(−1)0 = 1. Finally, the spin of
the deuteron is sd = 1. The relevant physical process is

π− d→ n n , (2.31)

which proceeds through the formation of a π−d atom and its subsequent decay into a pair of
neutrons. This decay takes place from the ground state of the pion-deuteron atom, which has
ℓ = 0 (with a small admixture of ℓ = 2): its phase under a parity transformations is (−1)0 = 1.
Conservation of angular momentum implies, since ℓ = 0 and the pion is spinless, that J = 1
both in the initial and in the final state. The final state is nonrelativistic, and can therefore be
described in the framework of quantum mechanics as ψ(~x)|S, Sz〉, with ψ(~x) = Rℓ(r)Y

m
ℓ (θ, ϕ)

the spatial wave function and |S, Sz〉 the spin wave function. Overall the wave function has to be
antisymmetric under exchange of the neutrons since these are fermions. The spin wave function

13This is a simplification: processes could take place to higher orders in perturbation theory, so these matrix
elements could vanish with the process still being possible. To get things straight we should replace HI with the
scattering operator S or the decay operator Γ, but the argument would be the same made here.
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ℓ S J (−1)S+ℓ+1

0 1 1 1
1 0 1 1
1 1 0⊕ 1⊕ 2 -1
2 1 1⊕ 2⊕ 3 1

Table 7: Combinations of S and ℓ allowed by the conservation of angular momentum in the π−d
capture process.

is constructed starting from two spin-12 states, and since 1
2 ⊗ 1

2 = 0⊕ 1, we have S = 0, 1. It is
easy to write down explicitly the states corresponding to the two cases,

|12 1
2〉 ⊗ |12 1

2〉 = |11〉
1√
2

(
|12 − 1

2〉 ⊗ |12 1
2〉+ |12 1

2〉 ⊗ |12 − 1
2〉
)
= |10〉

|12 − 1
2〉 ⊗ |12 − 1

2〉 = |1− 1〉
1√
2

(
|12 − 1

2〉 ⊗ |12 1
2〉 − |12 1

2〉 ⊗ |12 − 1
2〉
)
= |00〉 ,

(2.32)

and in turn to determine the sign acquired under exchange of the two neutrons as (−1)S+1. As for
the spatial part, exchanging the neutrons corresponds to sending ~x→ −~x, so the corresponding
sign is (−1)ℓ. All in all we must have (−1)S+ℓ+1 = −1. Conservation of angular momentum
limits the possible combinations of S and ℓ in the final state to those listed in Table 7, since
those are the only ones containing 1. Among these, the only one allowed by the Fermi-Dirac
statistics of neutrons is ℓ = S = 1. Since ηn = 1, this implies for the parity of the final state
η2n(−1)ℓ = −1. This must be equal to that in the initial state, which is ηπηd(−1)0 = ηπηd = ηπ.
In conclusion then ηπ = −1.

Another example is the intrinsic parity of the ∆++, determined from the decay ∆++ → p π+.
Since s∆++ = 3

2 , sp = 1
2 and sπ+ = 0, the final state must have either ℓ = 1 or ℓ = 2. This

can be determined from the angular distribution of the decay products. From the relation
η∆++ = ηpηπ+(−1)ℓ = (−1)ℓ+1, and the experimental determination that ℓ = 1, one finds
η∆++ = 1.

In other cases, the intrinsic parity can be assigned on the basis of theoretical considerations.
This is the case of the photon: classically the electric field ~E transforms like a vector, and
since ~E = −~∇φ − ∂

∂t
~A, so has to transform the vector potential ~A. Vectors change sign under

parity. Upon quantisation the physical modes of the photon are enconded in ~A, and for the
intrinsic parity this leads to ηγ = −1. Another way to see this is that in the quantum theory
of electrodynamics (QED), the coupling of photons to electrons is described by means of the
photon field Aµ and of the electric current Jµ. The electric current is a Lorentz vector, and so
has to be the photon, hence ηγ = −1.

2.1.2 Charge conjugation

We now turn to charge conjugation (C), which consists in exchanging particles with the corre-
sponding antiparticles, keeping momenta and spin unchanged. Denoting with ᾱ the antiparticle
corresponding to particle α, the action of C on particle states is defined by

C|~p, sz;α〉 = ξα|~p, sz; ᾱ〉 , (2.33)
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where again a phase ξα has to be included for generality. An argument identical to that used
above for parity requires that C be a unitary operator and [C,H] = 0. Changing from particle
to antiparticle leads to the change in sign of the internal quantum numbers, like, e.g., the electric
charge q. Moreover, since the magnetic moment of a particle, ~µ, is proportional to the product
of charge and spin, ~µ ∝ q~s, it also changes sign under C. Other quantities that change sign
under C are the baryon, lepton and lepton family numbers. For all these quantities, as well as
for the electric charge, we have that {C,O} = 0. If we reversed the discussion and started from
this anticommutation relation we would find that for each particle state with given values of
these observables there is a corresponding state for which the observables have the same absolute
value and opposite sign: indeed, these are the antiparticles. Applying C twice we find

C2|~p, sz;α〉 = ξαξᾱ|~p, sz;α〉 , (2.34)

i.e., C2 is just a phase transformation. Quantum field theory requires that ξαξᾱ = 1, both for
bosons and fermions, and so we can write C2 = 1. In general, however, the value of ξα = ±1 is
relevant only for neutral particles that are self-conjugate, like γ and π0 (but not n).

In order to assign the intrinsic charge conjugation phase ξα to a self-conjugate particle we
can either rely on theoretical arguments or on the selection rule implied by charge conjugation
invariance of a theory. As an example of the first method, consider the photon. Recall the
classical Maxwell equations with sources, and the relations between the electric and magnetic
fields and the potential,

~∇ · ~E ∝ ρ , ~E = −~∇φ− ∂ ~A

∂t
,

~∇∧ ~B ∝ ~J , ~B = ~∇∧ ~A .

(2.35)

Exchanging negative and positive charges corresponds to ρ → −ρ and ~J → − ~J , which in turn
changes the signs of ~E and ~B. At the level of the potential Aµ = (φ, ~A), this is obtained by
changing Aµ → −Aµ. Carrying this over to the quantum case we then have for the quantum
photon field C†AµC = −Aµ, and so ξγ = −1.

This result can then be employed to establish the charge conjugation phase of the neutral
pion by means of the second method. Since the π0 decays into two photons, we must have
ξπ0 = ξ2γ = 1. The same value of ξ can be assigned to the charged pions if we wish, but this is
just a matter of convention: since they are not self-conjugate, there is no selection rule for them
associated to charge conjugation, and we cannot fix ξπ± in this way.

If charge conjugation were an exact symmetry of Nature, then the decay process π0 → γγγ
would be strictly forbidden. Violations of charge conjugation symmetry come only from the
weak interactions, which have very little to do with this process, so we expect that this process
is strongly suppressed. Experimental results give for the relative probability of π0 → 3γ with
respect to π0 → 2γ the upper bound Γπ0→3γ/Γπ0→2γ < 3.1 · 10−8.

2.1.3 Time reversal and the CPT theorem

We conclude with a brief discussion of time reversal (T ), i.e., the inversion of the arrow of
time. Under such a transformation, the signs of both the momentum components and the spin
components change sign. The effect of T on particle states reads

T |~p, sz;α〉 = ζα,sz | − ~p,−sz;α〉 , (2.36)
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where the phase ζ turns out to depend on sz as well as on the particle species, and reads
ζα,sz = (−1)s−szζα. Contrary to P and C, T is an antiunitary symmetry. In fact, in contrast
with Eq. (2.9), the requirement of invariance reads here TU(t)ψ(0) = U(−t)Tψ(0), and so the
operators must satisfy

TU(t)T † = U(−t) ⇒ TiHT † = −iH . (2.37)

There are two ways to achieve this: if T is antilinear and antiunitary, then Ti = −iT and we
need [T,H] = 0, while if T is linear then we need {T,H} = 0. The second case is excluded
again by the experimental absence of negative energy particle states, which forces us to have
T antiunitary and commuting with the Hamiltonian. As a consequence of antiunitarity, the
residual phase ζα has no physical meaning, since it can be reabsorbed in a redefinition of the
particle states.

It is a general theorem of quantum field theory, the CPT theorem, that for any Lorentz-
invariant theory of local quantum fields, the antiunitary transformation Θ = CPT is a symmetry.
On a particle state Θ acts as follows:

Θ|~p, sz;α〉 = CPT |~p, sz;α〉 = CPζα,sz | − ~p,−sz;α〉 = Cηαζα,sz |~p,−sz;α〉
= ξαηαζα,sz |~p,−sz; ᾱ〉 = θα,sz |~p,−sz; ᾱ〉 ,

(2.38)

Despite the nonconservation of P and C (and also CP ) in weak interactions, the product CPT
is a good symmetry also in that case. If we were to find violations of this symmetry, this would
have the deeply troubling consequence that quantum field theory could not be employed to
explain them, and should be replaced as the framework of our fundamental theories of pyhsics.

The CPT theorem has interesting consequences. As an example, it implies that particles
and antiparticles must have the same mass. For unstable particles, it implies that the lifetime
is the same as that of the corresponding antiparticle. The proof of these statements is rather
straightforward. For the equality of masses we have

Θp2|~p, sz;α〉 = m2
αθα,sz |~p,−sz; ᾱ〉

= Θp2Θ†Θ|~p, sz;α〉 = p2θα,sz |~p,−sz; ᾱ〉 = m2
ᾱθα,sz |~p,−sz; ᾱ〉 ,

(2.39)

since the four-momentum operator p = (p0 = H, ~p) transforms as TpT † = PpP † = (p0,−~p),
and CpC† = p. It then follows mα = mᾱ. One can similarly prove that for the spin one has
sα = sᾱ. For the lifetimes of unstable particles, working in the Born approximation for decay
probabilities, we have τ−1

α = Γα =
∑

f cf |〈f |HI |α〉|2, where cf are kinematical factors that
depend on the mass and spin of the final state particles (as well as their momenta, which are
however summed over). We find

Γα =
∑

f

cf |〈f |HI |α〉|2 =
∑

f

cf |〈f |Θ†HIΘ|α〉|2

=
∑

f

cf |〈f̄ |HI |ᾱ〉|2 =
∑

f

cf̄ |〈f̄ |HI |ᾱ〉|2 = Γᾱ .
(2.40)

2.2 Isospin symmetry of the strong interactions

In 1932 Chadwick discovered the neutron, thus solving the puzzle of the mismatch between the
mass and charge of the nuclei. In fact, it turned out that the neutron and the proton have very
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similar masses: mn = 939.57 MeV and mp = 938.28 MeV, so that (mn − mp)/mp ≃ 0.0014.
While the nuclear charge is e times the number of protons in the nucleus, the nuclear mass is
very accurately mp times the number of protons and neutrons.

The smallness of the mass difference between proton and neutron led Heisenberg, in the
same year 1932, to propose that these particles are actually two different states of the same
particle, the nucleon, and that they are affected in the same way by the strong interactions.
More precisely, he assumed that strong interactions were exactly invariant under the exchange
of proton and neutron; the small mass difference he attributed to electromagnetic effects. We
know now that in fact this symmetry would be approximate even if electromagnetic interactions
were switched off, and that an important role in establishing the mass difference between proton
and neutron is played by the mass difference between the up and down quarks: in fact, if it were
only for electromagnetism we would have mp > mn – with catastrophic consequences.

The symmetry that Heisenberg assumed for strong interactions was in fact more than just
that under exchange of proton and neutron. If p and n are two states of the nucleon, we can
assign to them the two-component vectors

p =

(
1
0

)

, n =

(
0
1

)

. (2.41)

The superposition principle then forces us to accept among the possible states of the nucleon
any linear combination of these two,

N(α, β) = αp+ βn =

(
α
β

)

, α, β ∈ C . (2.42)

What is assumed is that any of these states looks the same to the strong interactions. In math-
ematical terms, the assumed symmetry is under general unitary transformation of the nucleon
state, i.e., under SU(2) transformations of the nucleon state. This is the isospin symmetry. The
SU(2) group is a Lie group, with Lie algebra identical to that of the rotation group SO(3). In
the case of isospin SU(2), the isospin generators are usually denoted as Ii, i = 1, 2, 3, and they
satisfy the well-known commutation relations

[Ii, Ij ] = iεijkIk . (2.43)

Although not exact, isospin symmetry turns out to be a very good approximate symmetry of
strong interactions, and we will soon see why.

Assuming that the strong Hamiltonian Hs is invariant under isospin rotations amounts to
asking that [~I,Hs] = 0. This is also expressed by saying that isospin is conserved by strong
interactions, since in the Heisenberg picture d

dt
~I(t) = i[Hs, ~I(t)] = 0. This assumption has two

important consequences:

• [~I,Hs] = 0 implies that the spectrum of the theory is organised in degenerate isospin
multiplets, which form the bases of irreducible representations of SU(2);

• the conservation law d
dt
~I(t) = 0 implies that isospin is conserved in dynamical hadronic

processes, i.e., in decay and scattering processes.

In hindsight, knowing of the existence of quarks and of QCD, we can trace isospin symmetry back
to the symmetry under SU(2) rotations in the space of the up and down quarks, which (leaving
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aside electromagnetic effects) is broken only by the small difference between their masses. In
modern terms, we assign two-dimensional vectors to u and d as follows,

u =

(
1
0

)

, d =

(
0
1

)

, (2.44)

and find that the strong Hamiltonian is invariant under SU(2) rotations in this two-dimensional
space, up to a symmetry-breaking term proportional to the mass difference mu −md, which is
much smaller than the typical strong interaction scale, i.e., 1GeV. This is why isospin turns
out to be such a good symmetry for strong interactions.

In the language of representation theory, the proton and the neutron, or the up and the
down quark, form a basis of the fundamental (or defining) representation of SU(2). As is well
known, irreducible representations of SU(2) are labelled by an integer or half-integer number I,
which determines the total isospin ~I 2 = I(I+1) and the degeneracy 2I+1 of the representation
(see below). For the fundamental representation I = 1

2 . We will then use the notations

p =

(
1
0

)

= |N ; 12
1
2〉 , n =

(
0
1

)

= |N ; 12 −1
2〉 , (2.45)

and

u =

(
1
0

)

= |q; 12 1
2〉 , d =

(
0
1

)

= |q; 12 −1
2〉 , (2.46)

where the second argument is the value of I3 associated to the particle.
In general, irreducible representations are most easily constructed making use of the raising

and lowering operators I± = I1 ± iI2, which satisfy the commutation relations

[I3, I±] = ±I± , [~I 2, I±] = 0 , [I+, I−] = 2I3 . (2.47)

Furthermore, one can show that

~I 2 = I+I− − I3 + I23 = I−I+ + I3 + I23 . (2.48)

The first relation in Eq. (2.47) implies that if |ψ〉 is an eigenvector of ~I 2 and I3 with eigenvalues
C ≥ 0 and i3, then I±|ψ〉 is an eigenvector of ~I 2 and I3 with eigenvalues C and i3 ± 1. Let
us focus on the raising operator. The norm of I+|ψ〉 is 〈ψ|I−I+|ψ〉 = (C − i3 − i23)〈ψ|ψ〉,
where we used Eq. (2.48). Since this must be a nonnegative quantity, after repeated application
of I+ we must find at some point that In+1

+ |ψ〉 = 0. Let I be the corresponding eigenvalue
of I3, and denote |I I〉 = In+|ψ〉, so that I+|I I〉 = 0. From the last relation we find that
C = I(I + 1). Applying now I− on this state we find vectors Ik−|I I〉 = NI−k|I I − k〉 where
Ni3 are normalisation factors. Taking all the |I i3〉 to be normalised to 1 allows to determine
recursively the Ni3 up to a phase via |Ni3−1|2〈I i3 − 1|I i3 − 1〉 = |Ni3 |2〈I i3|I+I−|I i3〉, i.e.,
|Ni3−1|2 = |Ni3 |2[I(I+1)+i3−i23], withNI = 1. The phase of the vectors is arbitrary, and usually
fixed according to the Condon-Shortley convention, asking for the raising and lowering operators
I± = I1 ± iI2 have only positive matrix elements. In practice, Ni3−1 = Ni3

√

I(I + 1) + i3 − i23.
Clearly |N−I−1|2 = |N−I |2[I(I+1)− I− I2] = 0, so that I−|I − I〉 = 0, and the procedure stops
after we have obtained a total of 2I + 1 vectors.

37



For future utility, we assign representative vectors to antiquarks as well,

ū =

(
1
0

)

= |q̄; 12 −1
2〉 , d̄ =

(
0
1

)

= −|q̄; 12 1
2〉 . (2.49)

These states form a basis of the complex conjugate representation of the group. There are
three things to explain here: i) why is the sign of I3 reversed, while ii) the two-dimensional
representative vectors are the same for particle and antiparticle, and iii) why the minus sign
in the isospin state corresponding to d̄. The change in sign of I3 is related to the fact that
we are dealing with antiparticles, and as we will find out soon, I3 is precisely one of those
conserved charges that change sign under charge conjugation. At the same time, technical
reasons in quantum field theory when implementing charge conjugation invariance, and to the
phase convention Cu = ū and Cd = d̄, force us to use the very same vector representative for
particle and antiparticle. Finally, this fact, combined with our will to use the Condon-Shortley
convention for the isospin states |I I3〉, forces us to introduce a minus sign in one of the two
relations between isospin states and representative vectors.

One might wonder how come that starting from asking for invariance under exchange of
proton and neutron we ended up with the bigger SU(2) symmetry. To see that this is in fact a
natural implementation of the initial requirement, we discuss now a simple toy model, namely
the two-dimensional harmonic oscillator. In terms of creation and annihilation operators, and
up to an irrelevant additive constant, the Hamiltonian of this system reads

Hho = ~ω(a†1a1 + a†2a2) . (2.50)

The creation and annihilation operators satisfy the commutation relations

[ai, aj ] = [a†i , a
†
j ] = 0 , [ai, a

†
j ] = δij . (2.51)

The creation and annihilation operators can be interpreted as follows: a†1 and a1 create and

destroy a static “bosonic proton”, while a†2 and a2 create and destroy a static “bosonic neutron”.
No interaction takes place between these particles. The general eigenstate of Hho reads

|n1, n2〉 =
1√
n1!

1√
n2!

(a†1)
n1(a†2)

n2 |0〉 , (2.52)

with |0〉 the ground state a1,2|0〉 = 0. The total energy of the system in a given eigenstate is
then obtained summing the number of protons, n1, to the number of neutrons, n2, times their
(equal) mass ~ω: En1,n2 = En1+n2 = ~ω(n1 + n2). It is straightforward to establish that the

degeneracy of the energy level En is n+ 1. If we apply the operators I− = a†2a1 and I+ = a†1a2
to a state |n1, n2〉 we obtain

a†2a1|n1, n2〉 ∝ |n1 − 1, n2 + 1〉 , a†1a2|n1, n2〉 ∝ |n1 + 1, n2 − 1〉 , (2.53)

i.e., these operators respectively replace a proton with a neutron and a neutron with a proton.
It is evident that I+ = I†−, and one can verify explicitly that [I±, Hho] = 0. Moreover, defining

I3 =
1
2(a

†
1a1−a

†
2a2), one finds that also [I3, Hho] = 0. This is an obvious consequence of the fact

that 2I3 = [I+, I−], as can be directly verified. Notice now that the Hamiltonian is manifestly
invariant under unitary rotations of the creation and annihilation operators, i.e., ai → Uijaj
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particle I I3 Q B S Y

p 1
2

1
2 1 1 0 1

n 1
2 −1

2 0 1 0 1

π+ 1 1 1 0 0 0
π0 1 0 0 0 0 0
π− 1 -1 -1 0 0 0

K+ 1
2

1
2 1 0 1 1

K0 1
2 −1

2 0 0 1 1

K̄0 1
2

1
2 0 0 -1 -1

K− 1
2 −1

2 -1 0 1 -1

Σ+ 1 1 1 1 -1 0
Σ0 1 0 0 1 -1 0
Σ− 1 -1 -1 1 -1 0

∆++ 3
2

3
2 2 1 0 1

∆+ 3
2

1
2 1 1 0 1

∆0 3
2 −1

2 0 1 0 1
∆− 3

2 −3
2 -1 1 0 1

Table 8: Isospin multiplets of hadrons.

with U ∈ SU(2). It can be verified explicitly that I3, I1 = (I+ + I−)/2 and I2 = (I+ − I−)/(2i)
are indeed the generators of these transformations, and satisfy [Ii, Ij ] = iεijkIk. The proton-
neutron exchange operators are then naturally part of an SU(2) algebra. One can go on and
show that I2 = I21 + I22 + I23 = Hho

2~ω (
Hho

2~ω + 1). Eigenstates of energy En = ~ωn form therefore a
multiplet of isospin I = n

2 , which leads to degeneracy 2I +1 = n+1. Incidentally, this explains
the accidental degeneracy of the eigenstates of the two-dimensional harmonic oscillator.

After this detour, let us get back to strong interactions, and discuss the implications of isospin
symmetry for the hadron spectrum. As we mentioned above, this is expected to be organised in
(approximately) degenerate multiplets corresponding to the irreducible representations of SU(2).
As a matter of fact, besides the nucleon doublet formed by p and n, over the years several
other multiplets were found, formed by hadrons with very close-by masses and identical baryon
number and strangeness, but different electrical charge (pions, kaons, deltas, sigmas. . . ). A total
isospin I was assigned to these multiplets based on their degeneracy as degeneracy=2I+1, while
within a multiplet states were distinguished by assigning an increasing value of I3 to particles
with increasing electric charge (empirically, no same-charge particles were found in multiplets).
With this assignment of I3, the following empirical formula for the electirc charge Q, known as
Gell-Mann–Nishijima formula, applies:

Q = I3 +
1

2
(B + S) = I3 +

1

2
Y . (2.54)

Here Q is the electric charge, B the baryon number and S the strangeness, and we have intro-
duced for future utility the hypercharge Y = B + S. Examples of isospin multiplets are given in
Table 8.

From a modern perspective, the classification of hadrons in isospin multiplets is easily un-
derstood in terms of quarks, and of the composition of fundamental and complex-conjugate
representations of SU(2) (which are actually equivalent) and of the trivial representation. In
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fact, from the assignments of Eqs. (2.46) and (2.49), and assigning I = 0 to the s quark and the
corresponding antiquark, one can derive the mesonic multiplets of Table 8 by composing the two
representations corresponding to the relevant quark and antiquark, and the baryonic multiplets
by composing the three representations corresponding to the three relevant quarks. Here we
will touch on the subject rather briefly, and we will discuss these points in greater detail when
discussing the quark model. Since three quarks are needed to form a baryon, independently of
the type of quarks involved, the baryon number of each quark is 1

3 . Explicitly, for a baryon
made of nu up quarks, nd down quarks and ns strange quarks one has

1 = bunu + bdnd + bsns

3 = nu + nd + ns

}

=⇒
(

bu −
1

3

)

nu +

(

bd −
1

3

)

nd +

(

bs −
1

3

)

ns = 0 , (2.55)

for any nu, nd, ns. Next, from the assignment of isospin to the quarks we have that I3 =
1
2 (nu − nd). We also associate strangeness to the presence of strange quarks, via S = −ns.
From this and from the isospin of the proton and neutron we find the quark content of these
particles,

1 = n(p)u − n
(p)
d = 2n(p)u − 3

−1 = n(n)u − n
(n)
d = 2n(n)u − 3

}

=⇒ n(p)u = 2 , n(n)u = 1 . (2.56)

From the charge of p and n we find

1 = qun
(p)
u + qdn

(p)
d = 2qu + qd

0 = qun
(n)
u + qdn

(n)
d = qu + 2qd

}

=⇒ qu =
2

3
, qd = −1

3
. (2.57)

Using now the Lambda baryon, which is a neutral, isospin-singlet particle with strangeness
S = −1, we find that qs = −1

3 . One can verify that in this way we fulfill the Gell-Mann–
Nishijima at the level of quarks, so that it will be automatically satisfied at the level of hadrons.
We can now give the expressions for the observables I3, Q, B and S for any hadron in terms
of the number of quarks and antiquarks: denoting with Nf the number of quarks of flavour f
minus the number of antiquarks of the same flavour, Nf = nf − nf̄ , we have

I3 =
1
2(Nu−Nd) , Q = 2

3Nu− 1
3(Nd+Ns) , B = 1

3(Nu+Nd+Ns) , S = −Ns . (2.58)

The construction above seems a bit ad hoc, especially for what concerns the choice of the number
of quarks and the assignment of isospin and strangeness. A full justification will come with the
quark model.

It is now easy to build up the mesons containing only u and d by composing two 1
2 represen-

tations: as is well known, 1
2 ⊗ 1

2 = 0⊕ 1, so we get an isosinglet and an isotriplet. An isosinglet
can also be obtained as ss̄, and the two states may mix; we will not touch upon that state for
the time being. The isotriplet, on the other hand, corresponds to the pions:

−ud̄ = |q; 12 1
2〉 ⊗ |q̄; 12 1

2〉 = |1 1〉 = π+ ,

1√
2
(uū− dd̄) = 1√

2

(
|q; 12 1

2〉 ⊗ |q̄; 12 −1
2〉+ |q; 12 −1

2〉 ⊗ |q̄; 12 1
2〉
)

= |1 0〉 = π0 ,

dū = |q; 12 −1
2〉 ⊗ |q̄; 12 −1

2〉 = |1 −1〉 = π− .

(2.59)
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particle I I3 Q B S Y

u 1
2

1
2

2
3

1
3 0 1

3
d 1

2 −1
2 −1

3
1
3 0 1

3

s 0 0 −1
3

1
3 -1 −2

3

Table 9: Isospin multiplets of quarks.

Kaons are obtained even more simply, since for them the relevant composition is 1
2 ⊗0 = 1

2 . One
then finds straightforwardly

us̄ = |q; 12 1
2〉 ⊗ |s̄〉 = |12 1

2〉 = K+ ,

ds̄ = |q; 12 −1
2〉 ⊗ |s̄〉 = |12 −1

2〉 = K0 ,

sū = |s〉 ⊗ |q̄; 12 −1
2〉 = |12 −1

2〉 = K− ,

−sd̄ = |s〉 ⊗ |q̄; 12 1
2〉 = |12 1

2〉 = K̄0 .

(2.60)

Notice that the two multiplets are distinguished by strangeness. The goodness of isospin symme-
try can be estimated by looking at mass splittings within the multiplets. We have for example

mn = 939.57 MeV , mp = 938.28 MeV ,

mπ± = 139.57 MeV , mπ0 = 134.98 MeV ,

mK± = 493.7 MeV , mK0,K̄0 = 497.6 MeV ,

(2.61)

so that splittings are all of orders between the permille and the percent.
Besides static properties, isospin invariance has important consequences for dynamical pro-

cesses as well. Consider for example the η meson, mη = 540 MeV. This is a neutral pseudoscalar
meson (Jη = 0, ηη = −1) like the π0, but with I = 0. As such, it can decay electromagnetically
in two photons. Its mass is sufficient also for strong decays into two and three pions, but the
two-pion decay process is forbidden by parity: J = 0 in the final state requires ℓ = 0, so that
it would have positive rather than negative parity. The three-pion process is instead forbidden
by isospin and charge-conjugation symmetry. In fact, electric charge conservation restricts the
possible three-pion final states to π0π0π0 and π+π−π0. One can show that under the isospin
rotation R2 = eiπI2 the following relation holds,

R2|I I3〉 = (−1)I−I3 |I −I3〉 . (2.62)

Moreover, both the eta and neutral pion have charge-conjugation parity ξη = ξπ0 = 1. Defining
the G-parity transformation as G ≡ CR2, one then finds

G|η〉 = C|η〉 = |η〉 ,
G|π+π−π0〉 = C(−1)1−1(−1)1+1(−1)1−0|π−π+π0〉 = −|π+π−π0〉 ,
G|π0π0π0〉 = C(−1)3|π0π0π0〉 = −|π0π0π0〉 ,

(2.63)

so that the G-parity of the eta and of the three-pion state differ.
Isospin conservation implies also quantitative relations between the probabilities of different

scattering processes taking place. As we will see later, the probability that two particles scatter
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and produce some prescribed final state is given by the absolute value square |Mi→f | of the
scattering amplitude, which in turn is the matrix element of the scattering operator S (or S-
matrix) between the free-particle states |φi〉 and |φf 〉 corresponding to the initial and final states
of the process, Mi→f = 〈φf |S|φi〉. All that we need to know at this stage is that if both the free
and the interaction part of the Hamiltonian are invariant under a symmetry transformation, so
will be the S-matrix, i.e., if for some symmetry transformationM we have [M,H0] = [M,H] = 0
then [M,S] = 0. Let us consider the case of strong interactions and isospin invariance, and focus
on nucleon-pion scattering processes. To this end, it is convenient to decompose the nucleon-
pion states in pure isospin components. From the composition rule 1

2 ⊗ 1 = 1
2 ⊕ 3

2 we find that
this states contain a pure I = 1

2 and a pure I = 3
2 part. A simple calculation using the lowering

operators I− and the relation ~I 2 = I+I− + I3(I3 − 1) shows that

|32 3
2〉 = |12 1

2〉|1 1〉 = |pπ+〉 ,
√
3|32 1

2〉 = |12 −1
2〉|1 1〉+

√
2|12 1

2〉|1 0〉 = |nπ+〉+
√
2|pπ0〉 ,

√
3|32 −1

2〉 =
√
2|12 −1

2〉|1 0〉+ |12 1
2〉|1 −1〉 =

√
2|nπ0〉+ |pπ−〉 ,

|32 −3
2〉 = |12 −1

2〉|1 −1〉 = |nπ−〉 ,
√
3|12 1

2〉 =
√
2|12 −1

2〉|1 1〉 − |12 1
2〉|1 0〉 =

√
2|nπ+〉 − |pπ0〉 ,

√
3|12 −1

2〉 = |12 −1
2〉|1 0〉 −

√
2|12 1

2〉|1 −1〉 = |nπ0〉 −
√
2|pπ−〉 .

(2.64)

These relations can be inverted to achieve the desired decomposition. Here we will be concerned
with the processes

p π+ → p π+ , p π− → p π− , p π− → n π0 , (2.65)

so we will need the following results,

|pπ+〉 = |32 3
2〉 ,

|pπ−〉 = 1√
3

(
|32 −1

2〉 −
√
2|12 −1

2〉
)
,

|nπ0〉 = 1√
3

(√
2|32 −1

2〉+ |12 −1
2〉
)
.

(2.66)

Exploiting invariance one can prove that

〈I ′I ′3|S|II3〉 = δI′IδI′3I3〈II3|S|II3〉 ,
〈II3|S|II3〉 = 〈II ′3|S|II ′3〉 ≡ MI .

(2.67)

Both these results follow from [~I, S] = 0: in particular, [~I 2, S] = 0 and [I3, S] = 0 imply that the
initial and final state must have the same eigenvalues of ~I 2 and I3 for the matrix element not to
vanish. The second result can be proved explicitly using [I±, S] = 0, but is in fact a particular
case of the more general Wigner-Eckart theorem. We then find for the nucleon-pion scattering
amplitudes

Mpπ+→pπ+ = 〈pπ+|S|pπ+〉 = 〈32 3
2 |S|32 3

2〉 = M 3
2
,

Mpπ−→pπ− = 〈pπ−|S|pπ−〉 = 1
3

(
〈32 −1

2 |S|32 −1
2〉+ 2〈12 −1

2 |S|12 −1
2〉
)
= 1

3

(

M 3
2
+ 2M 1

2

)

,

Mpπ+→nπ0 = 〈nπ0|S|pπ−〉 =
√
2
3

(
〈32 −1

2 |S|32 −1
2〉 − 〈12 −1

2 |S|12 −1
2〉
)
=

√
2
3

(

M 3
2
−M 1

2

)

.

(2.68)
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Figure 15: Total cross sections for π+p and π−p scattering.

Notice that one also has Mpπ+→nπ0 = Mnπ0→pπ+ . Other relations between amplitudes can be
derived along the lines above. It is an experimentally known fact that at a center-of-mass energy
of

√
s = 1.232 GeV = m∆ the pπ+ scattering process shows a peak in its cross section, which is

proportional to the probability of the process (see Section 1.6). This peak corresponds precisely
to the ∆++ resonance: at this energy the scattering process proceeds through the formation
of this unstable particle and its subsequent decay. Such a particle is a member of an isospin
quartet, with I = 3

2 , so it is expected that for energies nearm∆ the amplitude M 3
2
will dominate

over M 1
2
: one can imagine the S-matrix element is approximately the product of the amplitude

to create the ∆ times the amplitude for its decay, which involve only the I = 3
2 components of

the scattering states. At
√
s ≈ m∆ we will then have that At those energies we will have that

the cross sections for the processes in Eq. (2.65) satisfy14

σpπ+→pπ+

σpπ−→pπ−

≃ 9 ,

σpπ+→pπ+

σpπ−→nπ0

≃ 9

2
.

(2.69)

At this energy, the only scattering channel available for the pπ+ initial state is the elastic channel
(there is enough energy for another neutral pion, but G-parity forbids its production), while for
pπ− there are the elastic channel and the inelastic process pπ− → nπ0. We can then obtain the
following relation for total cross sections,

σpπ+tot

σpπ−tot
=

σpπ+→pπ+

σpπ−→pπ− + σpπ−→nπ0

≃√
s=m∆

1
1
9 + 2

9

= 3 . (2.70)

This relation is well verified experimentally (see Fig. 15).
A similar but easier calculation can be done to relate the three inelastic processes

pp→ dπ+ , pn→ dπ0 , nn→ dπ− . (2.71)

14The proportionality factors between cross section and |M2
i→f depend on the mass and spin of the particles

and on
√
s, so they are the same for all the processes and cancel out in ratios.
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Figure 16: Lightest spin 1
2 baryons (left) and lightest pseudoscalar mesons (right) known at

the end of the ’50s (black circles) organised in hexagonal patterns. Horizontal lines correspond
to constant strangeness, diagonal lines correspond to constant electric charge. The η meson is
shown as well with an empty circle.
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Figure 17: Spin-32 baryon resonances known at the end of the ’50s (black circles) organised
in a triangular pattern. Horizontal lines correspond to constant strangeness, diagonal lines
correspond to constant electric charge. The Ω baryon is shown as well with an empty circle.

The deuteron d has I = 0, so the final states are pure I = 1 states. The initial states have in
general both I = 0 and I = 1, since 1

2 ⊗ 1
2 = 0⊕1, but only the I = 1 component will contribute

to the scattering amplitude. More precisely, the pp and nn states are pure I = 1, while for the
pn state we have

|pn〉 = 1√
2
(|10〉+ |00〉) . (2.72)

One then concludes that Ppp→dπ+ = Pnn→dπ− = 2Ppn→dπ0 .
Isospin symmetry is an example of an internal symmetry, i.e., a symmetry that acts on

internal degrees of freedom, i.e., degrees of freedom unrelated to spacetime. In the next section
we will discuss a bigger internal symmetry of strong interactions.

3 The quark model

By the end of the ’50s, the known hadrons had grown into a “zoo”, comprising the two big
families of baryons and mesons, which could be further classified in isospin multiplets (see
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Figure 18: Baryons and mesons as in Figs. 16 and 17 but in the (I3, Y ) plane. Total isospin
assignments are also shown.

above) and according to their strangeness.15 This “zoo” seemed to lack an organising principle,
and some thought that there was not any: this was the idea of “nuclear democracy”, in which
hadrons are thought to be somehow all elementary and composite at the same time. However,
if one looked carefully enough certain patterns could be found, hinting at the possible existence
of an organising principle in the form of an underlying approximate symmetry.

If one plotted the eight lightest, spin-12 baryons in the I3, S (isospin-strangeness) plane, they
would fit nicely in a hexagonal array (see Fig. 16). These baryons fit also into isospin multiplets,
with small (permille) mass splittings within each multiplet. Mass splittings between baryons
with different strangeness were larger, but showed an interesting regularity: a decrease of one
unit in strangeness corresponded to a change in mass of the order of 150 MeV.

If one plotted instead the nine known spin-32 baryon resonances, one would find an almost-
triangular array (see Fig. 17), with a single isospin multiplet for each value of S, and the same
regularity concerning the mass splittings: with a decrease in S comes an extra 150 MeV of mass.

If one plotted the seven lightest, pseudoscalar mesons one would find a hexagonal array

15“Strangeness” was literally associated to the strange behaviour of certain particles. Strange particles were
produced on short time scales, typical of the strong interactions, but decayed on long time scales, typical of
the weak interactions. It was then natural to assume that strong and weak interactions were responsible for
their production and decay, respectively. In the production process only certain pairs of strange particles always
appeared, signaling the existence of a new quantum number conserved by the strong interactions: it was indeed
possible to consistently assign an integer number called strangeness to each particle, in such a way that it was
conserved in strong processes. On the other hand, strangeness was not conserved in weak processes.
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similar to that of the light baryons, with a “missing meson” in the center, and shifted by one
unit in the direction of strangeness (see Fig. 16). Using instead the hypercharge Y = B+S, the
two patterns would precisely overlap (see Fig. 18). Hypercharge seems therefore better suited
than strangeness for a general classification of hadrons. Concerning mass splittings, they are
still small within isospin mutiplets, but they are rather pronounced between mutiplets: being
of the order of a few hundreds MeV, they are comparable with the meson masses. For the time
being we will set aside this complication, and focus on the baryons.

It is typical of the human mind to look for explanations whenever some regularity appears
in Nature. Here a simple explanation would be the existence of an approximate symmetry
extending the SU(2)I isospin symmetry and the U(1)Y symmetry associated to hypercharge.
The existence of the symmetry would explain the patterns through its irreducible represen-
tations; its breaking would explain the mass differences. More precisely, the approximate
degeneracy could be explained if the strong Hamiltonian Hs were the sum of some exactly
symmetric Hamiltonian, with degenerate multiplets of states corresponding to irreducible rep-
resentations of some continuous internal symmetry group, and a symmetry-breaking term,
Hs = H0 + HI . The symmetric Hamiltonian H0 would commute with the symmetry gener-
ators Oa, [H0,Oa] = 0, and so degenerate multiplets would emerge: for any H0|ψ〉 = E|ψ〉 we
would have also H0Oa1 . . .Oan |ψ〉 = Oa1 . . .OanH0|ψ〉 = EOa1 . . .Oan |ψ〉. Not all these states
are independent in general: finding out the dimension of the various irreducible representations
is one of the main problems in representation theory. Since we are assuming the existence of
an internal symmetry, the representations on the Hilbert space of the system should be unitary
(we are not inverting time here).

3.1 Looking for a symmetry: the algebra of symmetry generators

If symmetry is the reason behind the hadron multiplets, then the symmetry generators responsi-
ble for the degeneracy of particle states in the limit of exact symmetry should allow to reproduce
the patterns observed in Nature (e.g., the baryon octet) and to “navigate” within them. We
already know a pretty accurate part of this symmetry, namely isospin symmetry, and we also
know of strangeness and baryon number conservation: whatever the full symmetry group G is,
it must contain G ⊃ SU(2)I ×U(1)Y ×U(1)B. This means that the isospin generators ~I, the hy-
percharge Y and the baryon number B are among the symmetry generators. We know that the
isospin generators commute with hypercharge, and both isospin and hypercharge commute with
baryon number. On top of this, we know that I, I3 and Y , besides the baryon number B, and
spin ~J , allow a full classification of the light hadrons. This means that {H, ~p, J, J3, B, I, I3, Y }
is a complete set of commuting observables. Since we are looking for an internal symmetry,
we will leave four-momentum and spin out of the discussion. Moreover, no degeneracy appears
between baryons and mesons, so no symmetry generator should produce a change in baryon
number. This means that all the other Oa must commmute with B, so in our search for G we
can separate out the U(1)B factor and ignore it – this is what we will do from now on. If we are
to reproduce the observed multiplets, then given a simultaneous eigenvector of H0 and of I3 and
Y with eigenvalues (i3, y), it should be possible in general, using the symmetry generators, to
construct eigenvectors with the same energy and with (I3, Y )-eigenvalues equal to (i3± 1

2 , y± 1)
and (i3 ∓ 1

2 , y ± 1). This requires the introduction of new symmetry generators, beside isospin
and hypercharge, and determines the commutation relations of these new operators with I3 and
Y .
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We can now summarise our discussion by listing our assumptions:

1. we assume the existence of symmetry generators {Oa} such that the strong Hamiltonian
splits into Hs = H0 +HI with [Oa, H0] = 0;

2. we assume that {Oa} contains the Hermitian operators ~I, Y , and four operators V± and
W± that change (i3, y) into (i3 ± 1

2 , y ± 1) and (i3 ∓ 1
2 , y ± 1);

3. we assume that no other symmetry generator exists (besides B);

4. we assume that there are no more than two symmetry generators that can be diagonalised
simultaneously (again, besides B).

Assumption 3 has actually not been discussed above. We motivate it in the list below, where
we also summarise the motivation for the other assumptions, as discussed above:

1. we want to explain the approximate degenerate multiplets in terms of an approximate
continuous symmetry;

2. this symmetry must contain the already known symmetries, and should be able to repro-
duce the observed patterns in the (i3, y) plane;

3. we want to keep the symmetry group minimal: the operators listed above are all it takes
to move within the octet (and in the baryon resonance multiplet as well), so we hope that
they will be enough;

4. isospin and hypercharge allow to fully classify hadrons (of given mass, spin and baryon
number).

Before working out the consequences of our assumptions, it is worth recalling a few useful
results. Let A and B be symmetry generators, [A,H0] = [B,H0] = 0. Then the following facts
hold:

• any linear combination of A and B with complex coefficients is still a symmetry generator;

• the commutator [A,B] is still a symmetry generator;

• the hermitian conjugates A† and B† are still symmetry generators.

The first result is quite trivial. The second result follows from the Jacobi identity: for any
operators A1, A2, and A3,

[[A1, A2], A3] + [[A3, A1], A2] + [[A2, A3], A1] = 0 , (3.1)

and so
[[A,B], H0] = −[[H0, A], B]− [[B,H0], A] = 0 . (3.2)

Finally, taking the Hermitian conjugate of [H0, A] = 0 we find

0 = [H0, A]
† = −[H0, A

†] , (3.3)

since H0 = H†
0 . The set of all symmetry generators is therefore closed under complex linear

combinations, commutators and Hermitian conjugation. The first two properties make it a
complex Lie algebra.
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Let us now discuss in detail the consequences of our assumptions. Assumption 2 restates
that ~I and Y are symmetry generators, and we already know everything there is to know about
them. In particular, using the ladder operators I± = I1 ± iI2 we can recast their commutation
relations [Ii, Ij ] = iεijkIk and [~I, Y ] = 0 as

[I3, Y ] = 0 ,

[I3, I±] = ±I± , [Y, I±] = 0 ,

[I+, I−] = 2I3 .

(3.4)

Assumption 2 tells us also about the existence of operators V± and W± that must satisfy

[I3, V±] = ±1

2
V± , [Y, V±] = ±V± ,

[I3,W±] = ∓1

2
W± , [Y,W±] = ±W± .

(3.5)

These commutation relations follow from the requested action of these operators on eigenvectors:
for example, from

I3V+|i3, y〉 =
(
i3 +

1
2

)
V+|i3, y〉 = (V+I3 + [I3, V+])|i3, y〉 = i3V+|i3, y〉+ [I3, V+]|i3, y〉 , (3.6)

that should hold on a complete set of states, we conclude [I3, V+] =
1
2V+. Finally, since I3 and

Y are assumed to be Hermitian, we have for example that

[I3, V+]
† =

1

2
V †
+ =⇒ [I3, V

†
+] = −1

2
V †
+ , (3.7)

i.e., given V+, its conjugate V †
+ acts precisely as V− should. Since, according to assumption

3, our set of symmetry generators is minimal, and since it must be closed under Hermitian
conjugation, we have that V− and V †

+ must be proportional. We can then choose

V− ≡ V †
+ , W− ≡W †

+ . (3.8)

As we will see now, assumptions 3 and 4 allow to fully determine the algebra of commutators
(up to a sign that is fixed by the Hermiticity of the isospin generators). This is achieved more
easily if we adopt a unified notation for the various symmetry generators. We will denote with
~H = (H1, H2) (not to be confused with the Hamiltonian) the operators

H1 = I3 , H2 = κY , (3.9)

with κ a real positive scale factor to be determined along the way, and with E
(j)
s the other

operators,

E
(1)
± = I± , E

(2)
± = V± , E

(3)
± =W± . (3.10)

With this notation, the commutators Eqs. (3.4) and (3.5) read

[Ha, Hb] = 0 ,

[ ~H,E(j)
s ] = s~α (j)E(j)

s ,
(3.11)

where
~α (1) = (1, 0) , ~α (2) = (12 , κ) , ~α (3) = (−1

2 , κ) . (3.12)
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~α (1)

~α (2)~α (3)

−~α (1)

−~α (2) −~α (3)

Figure 19: Root system of SU(3).

A convenient choice is κ =
√
3
2 , so that ~α (j) 2 = 1 ∀j. In the language of Lie algebras, the

vectors α(j) are called the root vectors of the algebra, and form its root system (see Fig. 19).
The commuting elements Ha form the Cartan subalgebra.

Eqs. (3.11) and (3.12) tell us an important fact. We can build a linear space V as the span of

the symmetry generators, V = {∑j ajHj +
∑

j,s b
j
sE

(j)
s |aj , bjs ∈ C}. This linear space, together

with the commutator, forms the Lie algebra associated with our symmetry generators. In this
space, the action of a commutator with a fixed first argument is linear in the second, i.e., we
can define on V the linear operator adX via adXY ≡ [X,Y ]. Eqs. (3.11) and (3.12) then tell us

that the E
(j)
s are simultaneous eigenvectors of H1 and H2 with distinct pairs of nondegenerate

eigenvalues. This makes these operators automatically linearly independent,16 i.e., one can have
∑

j ajHj +
∑

j,s b
j
sE

(j)
s = 0 if and only if all the coefficients vanish, aj = bjs = 0.

3.1.1 A direct determination of the commutators

We can now work out all the remaining commutators. From assumption 3 it follows that the
commutator of any two operators must be a linear combination of them,

[E(j)
s , E

(k)
t ] = ~A jk

st · ~H +
∑

l′,u′

Cjkl
′

stu′E
(l′)
−u′ , (3.13)

where the minus sign in the subscript is chosen for convenience. Taking the commutator of the
left-hand side with ~H and using the Jacobi identity we find

[ ~H, [E(j)
s , E

(k)
t ]] = −[E

(k)
t , [ ~H,E(j)

s ]]− [E(j)
s , [E

(k)
t , ~H]] = (s~α (j) + t~α (k))[E(j)

s , E
(k)
t ] , (3.14)

i.e., [E
(j)
s , E

(k)
t ] is either an eigenvector of ad ~H or is zero. The first option is available only if

s~α (j) + t~α (k) = 0, i.e., k = j and t = −s, or, if j 6= k, if there are u, l such that

s~α (j) + t~α (k) + u~α (l) = 0 . (3.15)

16We know from the outset that H1 and H2 are independent from each other since they are not proportional,
but suppose we did not know. Linear independence of H1 and H2 can be rephrased as the fact that there is no
nonzero vector ~γ such that ~γ · ~H = 0. If such a ~γ existed, then it should be simultaneously orthogonal to all the
three ~α (j), which is clearly impossible.
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In the first case [E
(j)
s , E

(j)
−s ] commutes with ~H, and assumption 4 implies that it must be a linear

combination thereof:
[E(j)

s , E
(j)
−s ] = 2s~β (j) · ~H , (3.16)

where the factor of 2 is again chosen for convenience. Notice that ~β (j) must be real. Assumption

4 furthermore implies that ~β (j) 6= ~0: if it were zero, then E
(j)
s , E

(j)
−s and the linear combination

~α
(j)
⊥ · ~H with ~α

(j)
⊥ ·~α (j) = 0 would form a set of three commuting operators, against our hypothesis

that no such set of size bigger than 2 can be found. In the second case we have instead

[E(j)
s , E

(k)
t ] = CjklstuE

(l)
−u , (3.17)

where no sum is understood, and j, k, l and s, t, u are such that Eq. (3.15) is satisfied. Since

~α (1) − ~α (2) + ~α (3) = 0 , (3.18)

there are only six possible cases, corresponding to cyclic permutations of (1+, 2−, 3+) and
(1−, 2+, 3−):

[E
(1)
+ , E

(2)
− ] = C1 2 3

+−+E
(3)
− , [E

(3)
+ , E

(1)
+ ] = C3 1 2

++−E
(2)
+ , [E

(2)
− , E

(3)
+ ] = C2 3 1

−++E
(1)
− ,

[E
(1)
− , E

(2)
+ ] = C1 2 3

−+−E
(3)
+ , [E

(3)
− , E

(1)
− ] = C3 1 2

−−+E
(2)
− , [E

(2)
+ , E

(3)
− ] = C2 3 1

+−−E
(1)
+ .

(3.19)

Obviously, Ckjltsu = −Cjklstu. Moreover, since E
(j)
s = E

(j)
−s

†, we have that

Cjkl−s−t−u = −Cjklstu
∗ . (3.20)

Before proceeding further, it is worth noting that a rescaling of the E
(j)
s will not affect the

vectors ~α (j), but it will affect both ~β (j) and Cjklstu. In fact, these depend on the normalisation of

our operators. One can easily show that under a redefinition E
(j)
s → Λ

(j)
s E

(j)
s , with Λ

(j)
−s = Λ

(j)
s

∗,
one finds

~β (j) → 1

|Λ(j)
s |2

~β (j) ,

Cjklstu → Λ
(l)
−u

Λ
(j)
s Λ

(k)
t

Cjklstu =
|Λ(l)
u |2

Λ
(j)
s Λ

(k)
t Λ

(l)
u

Cjklstu .

(3.21)

We now take the commutator of Eq. (3.17) with E
(l)
u , again assuming that Eq. (3.15) is satisfied,

and find
[E(l)

u , [E(j)
s , E

(k)
t ]] = Cjklstu[E

(l)
u , E

(l)
−u] = Cjklstu2u

~β (l) · ~H . (3.22)

Summing over cyclic permutations of the indices we find

0 = Ckljtuss
~β (j) + C ljkustt

~β (k) + Cjklstuu
~β (l) , (3.23)

where we have used the Jacobi identity and the linear independence of the Ha. Taking instead

the commutator of Eq. (3.17) with E
(j)
−s we find

[E
(j)
−s , [E

(j)
s , E

(k)
t ]] = Cjklstu[E

(j)
−s , E

(l)
−u] = CjklstuC

jlk
−s−u−tE

(k)
t

= [E(j)
s , [E

(j)
−s , E

(k)
t ]]− [[E(j)

s , E
(j)
−s ], E

(k)
t ] = −2st~β (j) · ~α (k)E

(k)
t ,

(3.24)
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since [E
(j)
−s , E

(k)
t ] = 0. We then have the identities

CjklstuC
jlk
−s−u−t = −2st~β (j) · ~α (k) . (3.25)

Permuting k, t with l, u, and changing the sign of s, t, u, we get

Cjlk−s−u−tC
jkl
stu = −2su~β (j) · ~α (l) , (3.26)

with the same left-hand side. Summing and subtracting these two identities we obtain

CjklstuC
jlk
−s−u−t = −s~β (j) · (t~α (k) + u~α (l)) = ~β (j) · ~α (j) ,

0 = ~β (j) · (t~α (k) − u~α (l)) .
(3.27)

The second equation in Eq. (3.27) determines the ~β (j) up to a real factor:

~β (1) ⊥ ~α (2) + ~α (3) = (0,
√
3) ⇒ ~β (1) = N (1)(1, 0) = N (1)~α (1) ,

~β (2) ⊥ ~α (1) − ~α (3) = (32 ,−
√
3
2 ) ⇒ ~β (2) = N (2)(12 ,

√
3
2 ) = N (2)~α (2) ,

~β (3) ⊥ ~α (1) + ~α (2) = (32 ,
√
3
2 ) ⇒ ~β (3) = N (3)(−1

2 ,
√
3
2 ) = N (3)~α (3) .

(3.28)

We already know that ~β (1) = ~α (1), so that N (1) = 1: what the first of the equations above tells
us is that this is compatible with our construction. Plugging Eq. (3.28) into Eq. (3.23) we find

0 = CkljtusN
(j)s~α (j) + C ljkustN

(k)t~α (k) + CjklstuN
(l)u~α (l) , (3.29)

which together with Eq. (3.18) implies that17

CkljtusN
(j) = C ljkustN

(k) = CjklstuN
(l) . (3.30)

Plugging Eq. (3.28) into the first equation in Eq. (3.27) yields

CjklstuC
jlk
−s−u−t = N (j) . (3.31)

Multiplying both sides by N (k)N (l), using the cyclicity implied by Eq. (3.30) and the relation
Eq. (3.20), as well as antisymmetry in the first two indices, we find

N (j)N (k)N (l) = CjklstuN
(l)Cjlk−s−u−tN

(k) = −CjklstuN
(l)C ljk−u−s−tN

(k)

= −CjklstuN
(l)Cjkl−s−t−uN

(l) = |Cjklstu|2N (l)2 .
(3.32)

Setting N (j) = N̄ (j)(−1)σ
(j)
, with σ(j) = 0 or 1 and N̄ (j) > 0, this gives

(−1)σ
(j)+σ(k)+σ(k)

= 1 , |Cjklstu|2 =
N̄ (j)N̄ (k)

N̄ (l)
. (3.33)

17 If the vectors ~α (j) satisfy two different equations,
∑3

j=1 aj~α
(j) = 0 and

∑3
j=1 bj~α

(j) = 0, they must do so with
either all vanishing coefficient or all nonvanishing coefficients, since they are pairwise linearly independent vectors.
Multiplying the first equation by b3 and the second one by a3 and subtracting we find

∑2
j=1(b3aj −a3bj)~α (j) = 0,

which can be true only if b3aj = a3bj ∀j, i.e., if bj ∝ aj .
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Since N (1) = 1, i.e., N̄ (1) = 1 and σ(1) = 0, this relation implies that N (2) and N (3) must have
the same sign, i.e., σ(2) = σ(3), yet to be determined. However, we will act as if we did not know
that: from this we could still conclude that there can be either none or two negative N (j). From
Eq. (3.30) we find instead

CkljtusN̄
(j)(−1)σ

(j)
= C ljkustN̄

(k)(−1)σ
(k)

= CjklstuN̄
(l)(−1)σ

(l)
. (3.34)

It is easy to see, using Eq. (3.20), that the key relations Eqs. (3.33) and (3.34) remain unchanged

under redefinitions of our operators. We can then make a redefinition with Λ
(j)
s =

√
N̄ (j) to get

them in the form
(−1)σ

(j)+σ(k)+σ(k)
= 1 , |Cjklstu|2 = 1 ,

Ckljtus(−1)σ
(j)

= C ljkust(−1)σ
(k)

= Cjklstu(−1)σ
(l)
,

(3.35)

in terms of the new coefficients. The Cjklstu are now just phases. Under a further redefinition

with Λ
(j)
s = eisδ

(j)
these relations do not change, but Cjklstu → Cjklstue

−i(sδ(j)+tδ(k)+uδ(l)), so we can
fix one of them to 1, and the corresponding coefficient with stu → −s−t−u to −1. All that
remains to be done is fixing the σ(j).

For this last step, recall that with our normalisation

[E(j)
s , E

(k)
t ] = eiΦ

jkl
stuE

(l)
−u . (3.36)

Multiplying on the left by E
(l)
u we find

eiΦ
jkl
stuE(l)

u E
(l)
−u = E(l)

u (E(j)
s E

(k)
t − E

(k)
t E(j)

s ) = [E(l)
u , E(j)

s ]E
(k)
t + [E(j)

s , E(l)
u E

(k)
t ]

= eiΦ
ljk
ustE

(k)
−t E

(k)
t + [E(j)

s , E(l)
u E

(k)
t ] .

(3.37)

Restricting to a fixed energy subspace and taking the trace on both sides, the commutator term
gives no contribution, and

eiΦ
jkl
stu t̃rE(l)

u E
(l)
−u = eiΦ

ljk
ust t̃rE

(k)
−t E

(k)
t , (3.38)

where t̃r denotes our restricted way of taking the trace. But E
(l)
u = E

(l)
−u

†, so both traces are

positive real numbers, and we conclude eiΦ
jkl
stu = eiΦ

ljk
ust = eiΦ

klj
tus . This implies that

(−1)σ
(j)

= (−1)σ
(k)

= (−1)σ
(l)
, (3.39)

which together with the first equation in Eq. (3.35) implies (−1)3σ
(j)

= 1, i.e.,

σ(j) = σ(k) = σ(l) = 0 . (3.40)

From this it also follows that
Ckljtus = C ljkust = Cjklstu . (3.41)

We can finally use our freedom to redefine the phase of the operators to set

C2 3 1
+−− = C3 1 2

−−+ = C1 2 3
−+− = 1 , C2 3 1

−++ = C3 1 2
++− = C1 2 3

+−+ = −1 . (3.42)
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Summarising, besides Eqs. (3.4) and (3.5), the only nonzero commutators are the following:

[V+,W−] = I+ , [I−, V+] =W+ , [W−, I−] = V− ,

[V−,W+] = −I− , [I+, V−] = −W− , [W+, I+] = −V+ ,
(3.43)

together with

[E
(j)
+ , E

(j)
− ] = 2~α (j) · ~H =⇒







[I+, I−] = 2H1 = 2I3 ,

[V+, V−] = H1 +
√
3H2 = I3 +

3
2Y ,

[W+,W−] = −H1 +
√
3H2 = −I3 + 3

2Y .

(3.44)

We can replace our set of symmetry generators with one made entirely of Hermitian operators.
This simply requires to trade I±, V± and W± with

I1 =
I+ + I−

2
, I2 =

I+ − I−
2i

,

V1 =
V+ + V−

2
, V2 =

V+ − V−
2i

,

W1 =
W+ +W−

2
, W2 =

W+ −W−
2i

.

(3.45)

The commutation relations of these operators are obtained from Eqs. (3.5), (3.43) and (3.44),
together with the fact that all other commutators vanish. From Eq. (3.5) we get

[ ~H, I1] = i~α (1)I2 , [ ~H, I2] = −i~α (1)I1 ,

[ ~H, V1] = i~α (2)V2 , [ ~H, V2] = −i~α (2)V1 ,

[ ~H,W1] = i~α (3)W2 , [ ~H,W2] = −i~α (3)W1 ,

(3.46)

while from Eq. (3.43) a little patience leads to

[V1,W1] = [V2,W2] = i
2I2 , [V1,W2] = −[V2,W1] = i

2I1 ,

[I1, V1] = [I2, V2] = i
2W2 , [I1, V2] = −[V2, I1] = i

2W1 ,

[W1, I1] = −[W2, I2] = − i
2V2 , [W1, I2] = [W2, I1] = i

2V1 .

(3.47)

Finally, from Eq. (3.44) we obtain

[I1, I2] = iI3 ,

[V1, V2] = i(12I3 +
3
4Y ) ,

[W1,W2] = i(−1
2I3 +

3
4Y ) .

(3.48)

Eqs. (3.46) to (3.48) show an important fact: it is possible to express the algebra of commutators
in the form

[Oa,Ob] = ifabcOc , (3.49)

where {Oa} = {I1,2,3, V1,2,W1,2,
√
3
2 Y }, with a running on {1, . . . , 8} in the given order, and

where fabc are real coefficients. This indicates that the {Oa} generate a real Lie algebra with
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structure constants given by fabc. One can prove the following important properties of the
structure constants in the case at hand:

fabc = −fbac , fabc = fcab = fbca , fabcfabd = 3δcd . (3.50)

The first property is clearly general, as it originates in the antisymmetric nature of the commu-
tator. The second one is true for any compact semi-simple Lie algebra, i.e., for the Lie algebra
of any compact semi-simple Lie group.18 Finally, the third property depends on our choice
of normalisation of the various operators, although positive-semidefiniteness of the quadratic
form gcd ≡ fabcfabd holds in general for compact semi-simple Lie algebras; conversely, positive-
definiteness of gab implies that the Lie algebra is compact and semi-simple. This is reassuring:
since we are looking for a symmetry group that admits finite-dimensional unitary representa-
tions (i.e., the hadron multiplets), it better be compact. In the present context, the identities
of Eq. (3.49) can be derived by direct inspection: we will se below a more elegant way.

3.1.2 A smarter way to determine the commutators: the Killing form

The approach used above to determine the commutators was very much hands-down. A more
elegant approach, which also leads to an easy proof of the identities in Eq. (3.50), is based on
the so-called Killing form. Everything proceeds as above up to Eqs. (3.15)–(3.17). We then
make use of the linear operators adX to define a bilinear form on our algebra:

B(X,Y ) ≡ tr adXady . (3.51)

It helps here recalling what is the intrinsic meaning of the trace. Given an operator A defined
on a linear space V spanned by a basis {en}, we have that Aen can be decomposed as a linear
combination of basis vectors, Aen =

∑

m cnmem. The trace is then trA =
∑

n cnn. One can
show that trA does not depend on the choice of basis. In the case at hand, to compute B(X,Y )

we apply adXady on the generators ~H and E
(j)
s of our algebra, decompose the result, look for

the appropriate coefficient and perform the sum.
The bilinear form B(X,Y ) is the Killing form of the algebra, and has an important property

that follows from the following identity:

ad[X,Y ]Z = [[X,Y ], Z] = −[[Z,X], Y ]− [[Y, Z], X] = [X, [Y, Z]]− [Y, [X,Z]]

= [adX , adY ]Z ,
(3.52)

i.e., ad[X,Y ] = [adX , adY ]. It then follows that

B([X,Y ], Z) = tr ad[X,Y ]adZ = tr [adX , adY ]adZ

= tr adX [adY , adZ ] = −tr [adX , adZ ]adY

= B(X, [Y, Z]) = −B([X,Z], Y ) ,

(3.53)

or
B([X,Y ], Z) = B([Y, Z], X) = B([Z,X], Y ) . (3.54)

18A simple algebra is a non-Abelian algebra that does not contain non-trivial ideals. An ideal a ⊂ g is a linear
subspace of the algebra g that is invariant under commutators with any element of the algebra, [g, a] ⊂ a; it is
then also a subalgebra of g. An algebra is semi-simple if it is the direct sum of simple algebras, i.e, the direct sum
of simple algebras commuting with each other.
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This property allows us to greatly reduce the number of entries that we have to compute explic-

itly. As a first consequence of Eq. (3.53), we have that B(E
(j)
s , ~H) = 0. In fact,

B([s~α(j) · ~H,E(j)
s ], Hb) = −B(E(j)

s , [s~α(j) · ~H,Hb]) = 0 ,

~α(j)2B(E(j)
s , Hb) = B(E(j)

s , Hb) = 0 .
(3.55)

Furthermore,

0 = B([ ~H,E(j)
s ], E

(k)
t ) +B([ ~H,E

(k)
t ], E(j)

s ) = (s~α(j) + t~α(k))B(E(j)
s , E

(k)
t ) , (3.56)

which implies that B(E
(j)
s , E

(k)
t ) = 0 unless k = j and t = −s. In this case Eq. (3.53) implies

B([ ~H,E(j)
s ], E

(j)
−s) = B( ~H, [E(j)

s , E
(j)
−s ]) ,

s~α(j)B(E(j)
s , E

(j)
−s) = 2sB( ~H, ~H · ~β(j)) ,

α(j)
a B(E(j)

s , E
(j)
−s) = 2B(Ha, Hb)β

(j)
b ,

(3.57)

where sum over the repeated index b is understood. The elements B(Ha, Hb) have to be calcu-
lated explicitly, but this is easy. Let us introduce the following notation: if A is an element of
a linear space that decomposes as A =

∑

n cnen in the basis {en}, then we write coeffenA = cn.
Then

B(Ha, Hb) = tr adHaadHb
=
∑

c

coeffHc [Ha, [Hb, Hc]] +
∑

j,s

coeff
E

(j)
s
[Ha, [Hb, E

(j)
s ]]

=
∑

j,s

coeff
E

(j)
s
s2α(j)

a α
(j)
b E(j)

s = 2
∑

j

α(j)
a α

(j)
b .

(3.58)

Explicitly,

B(H1, H1) = 2
∑

j

α
(j)
1 α

(j)
1 = 2

[
1 · 1 + 1

2 · 1
2 +

(
−1

2

)
·
(
−1

2

)]
= 3 ,

B(H2, H2) = 2
[

0 · 0 +
√
3
2 ·

√
3
2 +

√
3
2 ·

√
3
2

]

= 3 ,

B(H1, H2) = 2
[

1 · 0 + 1
2 ·

√
3
2 +

(
−1

2

)
·
√
3
2

]

= 0 ,

(3.59)

and so
B(Ha, Hb) = 3δab , a, b = 1, 2 . (3.60)

Notice that if we had not fixed κ yet in Eq. (3.12), then

B(H2, H2) = 2
∑

j

α
(j)
2 α

(j)
2 = 2 [0 · 0 + κ · κ+ κ · κ] = 4κ2 ,

B(H1, H2) = 2
∑

j

α
(j)
2 α

(j)
2 = 2

[
1 · 0 + 1

2 · κ+
(
−1

2

)
· κ
]
= 0 ,

(3.61)

and we would choose κ =
√
3
2 to obtain the diagonal form of Eq. (3.60). The only other nonzero

elements of the Killing form are then determined by the relation

α(j)
a B(E(j)

s , E
(j)
−s) = 2B(Ha, Hb)β

(j)
b = 2B(Ha, Ha)β

(j)
a , (3.62)
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which, since ~β(j) 6= ~0, implies that B(E
(j)
s , E

(j)
−s) is nonzero. We are free to choose |B(E

(j)
s , E

(j)
−s)|

as we please, since we can always rescale the operators (which are however related, E
(j)
−s = E

(j)
s

†).
We choose

|B(E(j)
s , E

(j)
−s)| = 2B(Ha, Ha) = 6 , (3.63)

independently of j. This then fixes

B(E(j)
s , E

(j)
−s) = 6(−1)σ

(j)
,

~β(j) = (−1)σ
(j)
~α(j) ,

(3.64)

for some σ(j) = 0, 1 to be determined.
We can now use the properties of the Killing form to determine the coefficients Cjklstu. From

Eq. (3.54) we have that

B([E(j)
s , E

(k)
t ], E(l)

u ) = B([E
(k)
t , E(l)

u ], E(j)
s ) = B([E(l)

u , E(j)
s ], E

(k)
t ) , (3.65)

and using Eq. (3.17) and Eq. (3.64) we find

(−1)σ
(l)
Cjklstu = (−1)σ

(j)
Ckljtus = (−1)σ

(k)
C ljkust . (3.66)

All the Cjklstu have then the same absolute value squared. Using again Eq. (3.17) we have

CjklstuC
jkl
−s−t−uB(E

(l)
−u, E

(l)
u ) = B([E(j)

s , E
(k)
t ], [E

(j)
−s , E

(k)
−t ]) = B(E(j)

s , [E
(k)
t , [E

(j)
−s , E

(k)
−t ]])

= B(E(j)
s , [E

(j)
−s , [E

(k)
t , E

(k)
−t ]]) = 2t(−1)σ

(k)
~α(k) ·B(E(j)

s , [E
(j)
−s , ~H])

= 2st(−1)σ
(k)
~α(j) · ~α(k)B(E(j)

s , E
(j)
−s) ,

(3.67)
i.e.,

CjklstuC
jkl
−s−t−u = 2st(−1)σ

(j)+σ(k)+σ(l)
~α(j) · ~α(k) . (3.68)

Since Cjkl−s−t−u = −Cjklstu
∗, and since squaring the relation −u~α(l) = s~α(j) + t~α(k) we obtain

1 = −2st~α(j) · ~α(k), this means

|Cjklstu|2 = (−1)σ
(j)+σ(k)+σ(l)

. (3.69)

This implies that |Cjklstu| = 1 and that (−1)σ
(j)+σ(k)+σ(l)

= 1, i.e., either none or two of the

signs (−1)σ
(j)

are negative. By redefining the phase of the operators E
(j)
s → eisδ

(j)
E

(j)
s , we get

Cjklstu → e−i(sδ
(j)+tδ(k)+uδ(l))Cjklstu, so that Eq. (3.66) still holds true. We can always choose to set

one of the phases to a prescribed value, e.g., C2 3 1
+−− = 1, which leaves only the the relative sign

of the Cjklstu to be determined. This is done as in the previous subsection: we multiply Eq. (3.17)

on the left by E
(l)
u to find

CjklstuE
(l)
u E

(l)
−u = C ljkustE

(k)
−t E

(k)
t + [E(j)

s , E(l)
u E

(k)
t ] , (3.70)

and taking the appropriate trace in the Hilbert space of the system we find that the phases must
satisfy

Cjklstu = C ljkust = Ckljtus . (3.71)

56



This then implies that

(−1)σ
(j)

= (−1)σ
(k)

= (−1)σ
(l)
, (3.72)

which together with (−1)3σ
(j)

= 1 implies σ(j) = 0 ∀j. This concludes our new derivation, which
leads exactly to the same results.

As we have done above, we can replace the operators E
(j)
± with the Hermitian operators

A
(j)
1 = 1

2(E
(j)
+ +E

(j)
− ) and A

(j)
2 = 1

2i(E
(j)
+ −E(j)

− ). The algebra is then fully encoded in Eq. (3.49)
with appropriate structure constants fabc. It is straightforward to show that

B(A
(j)
1 , A

(k)
1 ) = 1

4B(E
(j)
+ + E

(j)
− , E

(j)
+ + E

(j)
− ) = 1

2B(E
(j)
+ , E

(j)
− ) = 3 ,

B(A
(j)
2 , A

(k)
2 ) = −1

4B(E
(j)
+ − E

(j)
− , E

(j)
+ − E

(j)
− ) = 1

2B(E
(j)
+ , E

(j)
− ) = 3 ,

B(A
(j)
1 , A

(k)
2 ) = 1

4iB(E
(j)
+ + E

(j)
− , E

(j)
+ − E

(j)
− ) = 1

4i

[

B(E
(j)
+ , E

(j)
− )−B(E

(j)
− , E

(j)
− )
]

= 0 ,

B(A
(j)
1,2, Ha) ∝ B(E

(j)
+ ± E

(j)
− , Ha) = 0 ,

(3.73)

which leads to the compact expression

B(Oa,Ob) = 3δab a, b = 1, . . . , 8 . (3.74)

Let us now derive the identities of Eq. (3.50). The first one, as already stated, is obvious. The
cyclicity property follows from the cyclicity of the Killing form, Eq. (3.54), together with the
following result:

B([Oa,Ob],Oc) = ifabdB(Od,Oc) = 3ifabc . (3.75)

Cyclicity and antisymmetry in the first two indices imply total antisymmetry of fabc. The last
identity follows from the definition of trace: since

adOaadOb
Oc = [Oa, [Ob,Oc]] = −fbcdfadeOe , (3.76)

we have that
3δab = B(Oa,Ob) = −fbcdfadc = facdfbcd . (3.77)

There is one more identity that we can obtain, this time by making use of the Jacobi identity:

0 = [[Oa,Ob],Oc] + [[Oc,Oa],Ob] + [[Ob,Oc],Oa] ,

0 = fbcmfamn + fabmfcmn + fcamfbmn .
(3.78)

This identity can be recast as

−fbamfcmn + fcamfbmn = fbcmfman , (3.79)

Notice finally that

adOaOb = [Oa,Ob] = ifabcOc = (adOa)cbOc ⇒ (adOa)bc = ifacb = −ifabc . (3.80)

These two results will prove useful later.
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3.2 SU(3) and its representations

After all this fuss, do we know what symmetry group is it that we have found? Let us see if
it is a matrix Lie group. If so, then there must be finite-dimensional matrices ta satisfying the
commutation relations Eq. (3.49), i.e.

[ta, tb] = ifabct
c . (3.81)

These would be the matrices spanning the Lie algebra of the group. Since from the commutation
relation and the identity fabcfabd = 3δcd we must have that tc = 1

3ifabc[t
a, tb], these matrices

must be traceless; since we need eight independent matrices, they must be at least 3× 3. There
are precisely eight independent, traceless, 3 × 3 matrices, which span the algebra su(3) of the
three-dimensional unitary group SU(3). Indeed, unitary matrices can be written as U = eiA

with A Hermitian; the unimodularity condition detU = 1 requires trA = 0. We can take the
eight independent matrices as follows: ta = 1

2λ
a, with λa the Gell-Mann matrices

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

(3.82)

The ta obey the normalisation condition

tr tatb =
1

2
δab . (3.83)

One can verify explicitly that the ta satisfy Eq. (3.81). Combined with Eq. (3.83), this tells us
that

fabc = −2i tr [ta, tb]tc , (3.84)

which shows explicitly their cyclicity property.
Given the algebra of Hermitian symmetry generators, we exponentiated it to obtain a com-

pact group: this is needed if we want to obtain finite-dimensional unitary representations, as
it was our original purpose. Our candidate for the symmetry group is then SU(3), but we still
have to show that it admits the desired representations. As a matter of fact, we have already
shown that the octet is indeed among the irreducible representations of this group, but this will
become more clear after we briefly review representation theory.

3.2.1 Lie groups and representation theory in a nutshell

Let us briefly review Lie groups and representation theory. A Lie group is a group that is also a
smooth manifold, with the group composition and inversion being smooth maps. A Lie group is
almost entirely characterised by its Lie algebra, i.e., the tangent space to the identity element.
If the Lie group has dimension n (the dimension of the manifold), then we can identify group
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elements g in a neighbourhood of the identity by means of n real coordinates α = {α1 . . . , αn},
i.e., g = g(α). The Lie algebra of the group is the linear space spanned by

La ≡ −i∂g(α)

∂αa

∣
∣
∣
∣
α=0

, (3.85)

which are called the generators of the algebra or of the group, endowed with the commutator.
One can show that the linear space is closed under commutators, and so one has

[La, Lb] = iCabcL
c , (3.86)

with Cabc the structure constants of the group.

The proof goes as follows. One cna find a sufficiently small neighbourhood of the identity where g(α)
g(β) and their inverses all lie in the neighbourhood, and so does the product g(α)g(β)g−1(α)g−1(β) =
g(Φ(α,β)), for some function Φ(α,β). This function must satisfy Φ(α,0) = Φ(0,β) = 0, since the
products equal the identity element whenever one of its argument vanishes. One then finds that

∂

∂αa

∂

∂βb
g(Φ(α,β))

∣
∣
∣
∣
α=β=0

=
∂

∂αa

[
∂Φc(α,β)

∂βb

∂g(Φ(α,β))

∂Φc

] ∣
∣
∣
∣
α=β=0

=
∂2Φc(α,β)

∂αa∂βb

∣
∣
∣
∣
α=β=0

∂g(Φ)

∂Φc

∣
∣
∣
∣
Φ=0

+
∂Φc(0,β)

∂βb

∣
∣
∣
∣
β=0

∂Φd(α,0)

∂αa

∣
∣
∣
∣
α=0

∂2g(Φ)

∂Φd∂Φc

∣
∣
∣
∣
Φ=0

=
∂2Φc(α,β)

∂αa∂βb

∣
∣
∣
∣
α=β=0

∂g(Φ)

∂Φc

∣
∣
∣
∣
Φ=0

= i
∂2Φc(α,β)

∂αa∂βb

∣
∣
∣
∣
α=β=0

Lc ,

while on the other hand, since ∂
∂αa

g−1 = −g−1( ∂
∂αa

g)g−1,

∂

∂αa

∂

∂βb
g(Φ(α,β))

∣
∣
∣
∣
α=β=0

=
∂

∂αa

[
g(α)iLbg−1(α)g(0)− g(α)g(0)g−1(α)iLb

]
∣
∣
∣
∣
α=0

=
∂

∂αa

[
g(α)iLbg−1(α)− iLb

]
∣
∣
∣
∣
α=0

= i2(LaLb − LbLa) = −[La, Lb] ,

from which Eq. (3.86) follows with Cab
c = −∂2Φc(α,β)

∂αa∂βb

∣
∣
α=β=0

.

From the Lie algebra, the Lie group is reconstructed via the exponential map,

g(α) = eiα·L , (3.87)

where α ·L =
∑

a αaL
a. Actually, the same Lie algebra can be shared by different groups. What

the exponential map reconstructs is the components of these groups connected to the identity,
which are all isomorphic. If the group is connected and compact, then the exponential map
reconstructs it entirely.

Let us now discuss the representation of groups. Given a group G (not necessarily of Lie
type), a representation of G is a mapping D between G and the space of invertible m × m
(generally complex) matrices, GL(C, n), that associates a matrix D(g) to every element of the
group, with the properties that D(g1g2) = D(g1)D(g2) and D(e) = 1; this implies in particular
that D(g−1) = D(g)−1. The number m is called the dimension of the representation. For Lie
groups we consider only continuous representations, i.e., such that D(g) is a continuous map
from the group manifold into mCm. Two representations D1 and D2 are equivalent if there is an
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invertible mapping M such that D1(g) = M−1D2(g)M for all g ∈ G; this immediately entails
that equivalent representations must have the same dimension. An irreducible representation
is one that is not equivalent to the direct product of representations of smaller dimension, i.e.,
it is not possible to bring all the D(g) in block diagonal form by means of a change of basis
D(g) → M−1D(g)M ; equivalently, no subspace of C

m is left invariant by the action of the
representation.19 For unitary groups like SU(3), and more generally for all compact Lie groups,
all the irreducible representations are equivalent to unitary representations, i.e., representations
in terms of unitary matrices, so that D(U †) = D(U−1) = D(U)−1 = D(U)†. One can also show
that for the unitary unimodular groups such matrices have to be unimodular, i.e., detD(U) =
1.20 Finally, for unitary groups the unitary representations are in bijective correspondence
with the Hermitian representations of the group algebra, from which they are obtained via the
exponential mapping.21 A representation of a Lie algebra g is a linear mapping d from g to
the space of matrices M(C,m), such that for all a1, a2 ∈ g one has d(a1 + a2) = d(a1) + d(a2)
(and so d(0) = 0) and d([a1, a2]) = [d(a1), d(a2)]. It is irreducible if there is no subspace of
C
m left invariant by all the d(a). In practice, one finds m×m Hermitian matrices T aR obeying

the commutation relations [T aR, T
b
R] = ifabcT

c
R, which provide a m-dimensional representation

of the algebra, and builds the m×m unitary matrices UR = exp{i∑a αaT
a
R}, which provide a

representation of the group.

3.2.2 The simplest representations of SU(3)

For any group, the simplest representation is D(g) = 1 for all g: this is the trivial representation,
which is one-dimensional. Correspondingly, all the elements of the Lie algebra of the group are
represented by zero.

For matrix Lie groups like SU(3), the second simplest representation is that provided by
the matrix group itself. This is the fundamental (or defining) representation, DF (U) = U , to
which it corresponds the fundamental representation of the algebra, obtained by differentiating
the group elements near the identity. For the special unitary groups SU(N), as we have already
mentioned above, the corresponding Lie algebra su(N) is readily found by noting that one can
always write U = eiα·t with traceless Hermitian matrices t = {t1, . . . , tN2−1}. One has that
su(N) is precisely the algebra of Hermitian traceless matrices, of dimension dim = N2 − 1. For
SU(3), dim = 8. Summarising,

fundamental representation: ta ⇒ U = eiα·t , (3.88)

19We have been a bit imprecise here, confusing reducible, which means that there is an invariant subspace, with
totally reducible, which means that can be brought in blocak-diagonal form. For semisimple groups (i.e., groups
with a semisimple algebra), the two notions are equivalent.

20A simple argument is as follows. The subset A ⊆ SU(N) such that det[D(a)] = 1 for a ∈ A must be a
subgroup, since det[D(a1a2)] = det[D(a1)D(a2)] = det[D(a1)] det[D(a2)] = 1, and it must be a normal subgroup,
i.e., U†aU ∈ A ∀a ∈ A and ∀U ∈ SU(N), since det[D(U†aU)] = det[D(a)] = 1. The only normal subgroups
of SU(N) are the group itself and the trivial subgroup {1}. In the first case, since there is at least one element
for which detD(a) = 1 (namely, the identity) we have that det[D(U)] = 1 ∀U ∈ SU(N). In the second case no
other element of the group is allowed to be represented by a unimodular matrix. If we now take U1,2 such that
[U1, U2] 6= 0, which certainly exist since the group is non Abelian, and consider the element U = U1U2U

†
1U

†
2 , we

find that det[D(U)] = 1, which would imply U = 1 and so U1U2 = U2U1, against the hypothesis, so that this
second possibility is excluded.

21More precisely, for simply connected groups every representation of the algebra comes from a representation
of the group.
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where the ta can be chosen to be ta = λa

2 with λa given in Eq. (3.82), as discussed at the beginning
of Section 3.2, so satisfying the commutation relations Eq. (3.81) and the normalisation condition
Eq. (3.83).

If we take the complex conjugate of Eq. (3.81) we find

[ta, tb]∗ = [(ta)∗, (tb)∗] = [(−ta)∗, (−tb)∗] = −ifabc(tc)∗ = ifabc(−tc)∗ , (3.89)

which shows that the matrices taC ≡ −(ta)∗ = −(ta)T provide another representation for the
algebra, the complex conjugate representation. In terms of group representations this corre-
sponds to eiα·tC = e−iα·t∗ = U∗ ≡ DC(U), which is indeed another valid representation since
DC(U1U2) = (U1U2)

∗ = U∗
1U

∗
2 = DC(U1)DC(U2) and obviously DC(1) = 1:

complex conjugate representation: taC = −(ta)∗ ⇒ UC = U∗ . (3.90)

Clearly tr taCt
b
C = 1

2δ
ab. Both the fundamental and the conjugate representation have dimension

3, and are hence denoted as 3 and 3̄, respectively. However, they are not equivalent.
There is another simple representation of the algebra which we have actually already encoun-

tered, and which is provided by the structure constants themselves. Recall Eq. (3.79), which we
rewrite as

(−i)fbam(−i)fcmn − (−i)fcam(−i)fbmn = ifbcm(−i)fman , (3.91)

If we now set (Tm)an ≡ −ifman, we find after a simple relabelling of indices

([T a, T b])mn = ifabc(T
c)mn . (3.92)

The matrices T a provide the adjoint representation of the algebra. From Eq. (3.80) we see that
the structure constants provide the matrix elements of the operator adX in the basis {Oa}. In
other words, the adjoint representation of the algebra is provided by the action of the algebra
on itself.

To see what is the corresponding representation of the group, consider the vector space
spanned by the generators, i.e., the space of Hermitian traceless matricesX = Xat

a, and consider
the mapping

X → AdUX ≡ UXU † . (3.93)

This is clearly a linear mapping of the vector space into itself, and so

AdUX = XbAdU t
b = ta(UA)abXb . (3.94)

Also, AdU provides a representation of the group, since

AdU1AdU2X = U1U2XU
†
2U

†
1 = (U1U2)X(U1U2)

† = AdU1U2X . (3.95)

Then we can write also (UA)ab = DA(U)ab, and as such it can be obtained as the exponential
of a representation of the algebra, DA(e

iαata) = eiαadA(ta), or UA = eiαaTa
A . For a U in the

neighbourhood of the identity we have then

ta(UA)abXb = ta(δab + iǫcT
c
Aab +O(ǫ2))Xb = X + taiǫcT

c
AabXb +O(ǫ2)

= XbUt
bU † = Xb(1+ iǫat

a +O(ǫ2))tb(1− iǫct
c +O(ǫ2)) = X + iǫc[t

c, tb]Xb +O(ǫ2)

= X + taiǫcifcbaXb +O(ǫ2) ,

(3.96)
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i.e., (T c)Aab = −ifcab = (T c)ab, the generators in the adjoint representation. In a more abstract
but equivalent way,

AdUX = (1+ iǫc(T
c) +O(ǫ2))X = UXU † = X + iǫc[t

c, X] +O(ǫ2)

= X + iǫcadtcX +O(ǫ2) = X + iadǫctcX +O(ǫ2) ,
(3.97)

i.e., the generators of the representation provided by Ad are the adta . This can be summarised as
Adeiαata = eiαaadta . Expressed as a matrix in the basis {ta}, adta are provided by the structure
functions, as we know from Eq. (3.80):

adtaX = [ta, X] = Xb[t
a, tb] = ifabct

cXb = tc(−ifacb)Xb = tc(T a)cbXb . (3.98)

Notice that for an eigenvector of adta one has adtaX = λX = tc(T a)cbXb = tcλXc, i.e.,
(T a)cbXb = λXc if and only if [ta, X] = λX. This observation will come in handy below.
In conclusion:

adjoint representation: (T a)bc = −ifabc ⇒
{

UtaXaU
† = tb(UA)baXa ,

AdeiαataX = eiαaadtaX .
(3.99)

The dimension of this representation is equal to the number of generators, i.e., it is eight-
dimensional, and for this reason it is denoted as 8. From Eq. (3.77) one finds that

trT aT b = −famnfbnm = famnfbmn = 3δab . (3.100)

The three representations discussed above are irreducible representations of SU(3).
It is actually a general result that given an irreducible representation T aR of the algebra

encoded in Eq. (3.81), one finds
trT aRT

b
R = dRδ

ab , (3.101)

with an appropriate dR. This can be proved making use of the total antisymmetry of the
structure constant (which is a consequence of the semi-semplicity and compactness of the group)
as follows. Multiplying the commutation relations,

[T aR, T
b
R] = ifabcT

c
R , (3.102)

by T dR and taking the trace, we find

tr [T aR, T
b
R]T

d
R = ifabctrT

c
RT

d
R ≡ ifabcMcd . (3.103)

Using the cyclicity of the trace

ifabcMcd = tr [T aR, T
b
R]T

d
R = tr [T bR, T

d
R]T

a
R = ifbdcMca . (3.104)

Using antisymmetry of fabc and symmetry of Mab this can be recast as

(−ifbac)Mcd =Mac(−ifbcd) ⇒ T bAM =MT bA , (3.105)

where TA are the generators in the adjoint representation. We then have that [M,T aA] = 0 for all
the generators of an irreducible representation of a Lie group, and by Schur’s lemma this implies
M = dR1. As we shall see below, the value of dR is uniquely determined by the representation.22

22One could think of changing it by changing the normalisation of the generators, but that has been fixed once
that the structure constants have been set to the values discussed in the previous subsection.
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A direct proof of Eq. (3.101) is as follows. Given a finite-dimensional unitary representation
of the algebra, since tr {[A,B]C} = tr {A[B,C]}, we find first of all that

s~α (j)trE
(k)
t

†E(j)
s = trE

(k)
t

†[ ~H,E(j)
s ] = tr ([ ~H,E

(k)
t ])†E(j)

s = t~α (k)trE
(k)
t

†E(j)
s , (3.106)

and since E
(k)
t

† = E
(k)
−t ,

(s~α (j) − t~α (k))trE(j)
s E

(k)
−t = 0 =⇒ trE(j)

s E
(k)
−t = δstδjktrE

(j)
+ E

(j)
− . (3.107)

We have moreover that

(~α (j))2trHkE
(j)
s =

∑

j

trHk[Hj , [Hj , E
(j)
s ]] =

∑

j

tr [Hk, Hj ][Hj , E
(j)
s ] = 0 , (3.108)

which implies trHkE
(j)
s = 0 for all k, s, j. Finally, from Eq. (3.44) we find

trHi[E
(j)
+ , E

(j)
− ] = tr [Hi, E

(j)
+ ]E

(j)
− = (~α (j))itrE

(j)
+ E

(j)
−

= trHi(2~α
(j) · ~H) = 2tr {HiHj}(~α (j))j ,

(3.109)

or, setting Mij = tr {HiHj} and using matrix notation,

M~α (j) =
1

2
tr {E(j)

+ E
(j)
− }~α (j) . (3.110)

The vectors ~α (j) are then eigenvectors of M . In a two-dimensional vector space there can be
at most two distinct eigenvalues; we will show now that there is actually only one eigenvalue.
Applying M on both sides of the equation ~α (1) − ~α (2) + ~α (3) = 0, we find

0 = 2M(~α (1) − ~α (2) + ~α (3)) = tr {E(1)
+ E

(1)
− }~α (1) − tr {E(2)

+ E
(2)
− }~α (2) + tr {E(3)

+ E
(3)
− }~α (3) ,

(3.111)
but this can be true only if (see footnote 17)

tr {E(1)
+ E

(1)
− } = tr {E(2)

+ E
(2)
− } = tr {E(3)

+ E
(3)
− } ≡ 2dR , (3.112)

which implies that M is a multiple of the identity,

Mij = trHiHj = dRδij . (3.113)

The last step is to show that

tr (E
(j)
+ ± E

(j)
− )(E

(j)
+ ± E

(j)
− ) = ±2trE

(j)
+ E

(j)
− = ±4dR ,

tr (E
(j)
+ ± E

(j)
− )(E

(j)
+ ∓ E

(j)
− ) = tr (E

(j)
+ E

(j)
− − E

(j)
+ E

(j)
− ) = 0 ,

(3.114)

which implies that the Hermitian operators A
(j)
1 = 1

2(E
(j)
+ + E

(j)
− ) and A

(j)
2 = 1

2i(E
(j)
+ − E

(j)
− )

satisfy
trA(j)

m A(k)
n = dRδ

jkδmn . (3.115)

Since trHkE
(j)
s = 0, both its real and its imaginary part vanish, so that trHkA

(j)
1,2 = 0, and the

statement follows.
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Figure 20: Weight diagrams of the fundamental and complex conjugate representations of SU(3).

3.2.3 The fundamental representation

Our discussion of representations given above does not really serve our purposes, since it is
focussed on the representative matrices. What we are really concerned with are the vector
spaces where the representations act, because they are the energy eigenspaces corresponding to
multiplets of particles with equal mass. In fact, the representation of the group (or of its algebra)
are provided by m×m matrices, which can be thought of as acting on a m-dimensional vector
space, implementing the symmetry transformations corresponding to the group elements. The
m basis elements correspond to m distinct particle states. A basis of this space where I3 and
Y are diagonal can potentially provide us with the physical particle states assuming of course
that we have identified the correct symmetry.

An important remark is in order here. If SU(3) were truly a symmetry, any basis would
be equivalent, and no choice of states would be “more physical” than any other. We know
however that SU(3) is actually broken by sizeable strong-interaction effects down to SU(2)I ×
U(1)Y , and furthermore that also SU(2)I is broken by electromagnetic interactions (as well as
by small strong-interaction effects). This singles out the basis of physical particles with definite
strangeness and electric charge, since only U(1)Y ×U(1)em ∼ U(1)Y ×U(1)I3 is a true symmetry
of Nature.

Let us begin with the fundamental representation of the algebra, provided by the Gell-Mann
matrices via ta = λa

2 . These act on the three-dimensional space C
3. In this representation I3

and Y are diagonal,

I3 =
λ3

2
=

1

2





1 0 0
0 −1 0
0 0 0



 , Y =
2√
3

λ8

2
=

1

3





1 0 0
0 1 0
0 0 −2



 , (3.116)

and so the basis vectors e(j), j = 1, 2, 3, e
(j)
i = δij ,

e(1) =





1
0
0



 , e(2) =





0
1
0



 , e(3) =





0
0
1



 , (3.117)

are eigenstates of I3 and Y and can in principle represent physical states. The action of the
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generators on the e(j) can be determined easily. Clearly,

I3e
(1) =

1

2
e(1) , Y e(1) =

1

3
e(1) ,

I3e
(2) = −1

2
e(2) , Y e(2) =

1

3
e(2) ,

I3e
(3) = 0e(3) , Y e(3) = −2

3
e(3) .

(3.118)

Next, we build the ladder operators,

I+ =
1

2
(λ1 + iλ2) =





0 1 0
0 0 0
0 0 0



 , I− =
1

2
(λ1 − iλ2) =





0 0 0
1 0 0
0 0 0



 ,

V+ =
1

2
(λ4 + iλ5) =





0 0 1
0 0 0
0 0 0



 , V− =
1

2
(λ4 − iλ5) =





0 0 0
0 0 0
1 0 0



 ,

W+ =
1

2
(λ6 + iλ7) =





0 0 0
0 0 1
0 0 0



 , W− =
1

2
(λ6 − iλ7) =





0 0 0
0 1 0
0 0 0



 ,

(3.119)

from which it follows that

I+e
(1)=0 , I−e(1)= e(2) , V+e

(1)=0 , V−e(1)= e(3) , W+e
(1)=0 , W−e(1)=0 ,

I+e
(2)= e(1) , I−e(2)=0 , V+e

(2)=0 , V−e(2)=0 , W+e
(2)=0 , W−e(2)= e(3) ,

I+e
(3)=0 , I−e(3)=0 , V+e

(3)= e(1) , V−e(2)=0 , W+e
(3)= e(2) , W−e(3)=0 .

(3.120)
Since ~I 2 = I−I+ + I3(I3 + 1) = I+I− + I3(I3 − 1), we have that

~I 2e(1) =
3

4
e(1) , ~I 2e(2) =

3

4
e(2) , ~I 2e(3) = 0 , (3.121)

so e(1) and e(2) form an isodoublet (I = 1
2) and e

(3) is an isosinglet (I = 0). We can then denote
the basis vectors labelling them with their eigenvalues |I, I3;Y 〉,

e(1) = |12 1
2 ;

1
3〉 , e(2) = |12 −1

2 ;
1
3〉 , e(3) = |0 0;−2

3〉 . (3.122)

Notice that all matrix elements of I±, V± and W± are positive. The basis vectors for a repre-
sentation are represented graphically as in Fig. 20, through what are called weight diagrams.

3.2.4 The complex conjugate representation

The complex conjugate representation also acts on C
3, and in the basis of Eq. (3.117) is obtained

by replacing λa → −λa∗. Since −(λ3,8)∗ = −λ3,8, we have that the eigenvalues of the basis
vectors change sign,

IC3 e
(1) = −1

2
e(1) , Y Ce(1) = −1

3
e(1) ,

IC3 e
(2) =

1

2
e(2) , Y Ce(2) = −1

3
e(2) ,

IC3 e
(3) = 0e(3) , Y Ce(3) =

2

3
e(3) .

(3.123)
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Moreover, since −(λ1,4,6)∗ = −λ1,4,6 and −(λ2,5,7)∗ = λ2,5,7, we have for the ladder operators
that

IC± = −(I±)
∗ = −I∓ , V C

± = −(V±)
∗ = −V∓ , WC

± = −(W±)
∗ = −W∓ , (3.124)

from which it follows

IC−e
(1)=0 , IC+e

(1)=-e(2) , V C
− e

(1)=0 , V C
+ e

(1)=-e(3) , WC
− e

(1)=0 , WC
+ e

(1)=0 ,

IC−e
(2)=-e(1) , IC+e

(2)=0 , V C
− e

(2)=0 , V C
+ e

(2)=0 , WC
− e

(2)=0 , WC
+ e

(2)=-e(3) ,

IC−e
(3)=0 , IC+e

(3)=0 , V C
− e

(3)=-e(1) , V C
+ e

(2)=0 , WC
− e

(3)=-e(2) , WC
+ e

(3)=0 .
(3.125)

By introducing appropriate signs we can make some of the matrix elements of the ladder opera-
tors positive, but not all of them. We choose to have I± and W± with positive matrix elements
only. We then set

e(1) = |12 −1
2 ;−1

3〉 , e(2) = −|12 1
2 ;−1

3〉 , e(3) = |0 0; 23〉 , (3.126)

where the overbar signals that this is the complex conjugate representation. Now, e.g.,

WC
− |0 0; 23〉 =WC

− e
(3) = −e(2) = |12 1

2 ;−1
3〉 ,

IC− |12 1
2 ;−1

3〉 = −IC−e(2) = e(1) = |12 −1
2 ;−1

3〉 ,
(3.127)

while
V C
− |0 0; 23〉 = V C

− e
(3) = −e(1) = −|12 −1

2 ;−1
3〉 , (3.128)

i.e., V C
± has a negative matrix element.23 The weight diagram for the complex conjugate repre-

sentation is also shown in Fig. 20.
So far we have found no connection between representations of SU(3) and hadronic physics.

This is going to change soon.

3.2.5 The adjoint representation

To deal with the adjoint representation, let us recall that a general 3 × 3 Hermitian traceless
matrix can be written as X = Xat

a, and that

ad(ta)X ≡ [ta, X] = [ta, tb]Xb = ifabcXbt
c = tc(T a)cbXb = tc(ad(ta)X)c

(ad(ta)X)c = (T a)cbXb .
(3.129)

The action of the matrices T a on ~X ∈ C
8, where ~X denotes the vector of components Xb, can

then be read off the commutators [ta, Xmt
m]. For example, given one of the E

(j)
± = X(E

(j)
± )mt

m,
we have

ad(I3)E
(j)
± = tc(T 3)cbX(E

(j)
± )b = [I3, E

(j)
± ] = ±α(j)

1 E
(j)
± = ±α(j)

1 tcX(E
(j)
± )c , (3.130)

23The origin of the minus sign in Eq. (3.126) is the same discussed before when relating isospin with quarks -
what a surprise. . .
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so ~X(E
(j)
± ) are the eigenvectors of T 3 with eigenvalues ±α(j)

1 . It is then easy to see that for
X equal to one of the ladder operators I±, V±, W± or to one of the diagonal operators I3 and

Ȳ ≡
√
3
2 Y we have that

T 3 ~X(I3) = 0 , T 8 ~X(I3) = 0 ,

T 3 ~X(Ȳ ) = 0 , T 8 ~X(Ȳ ) = 0 ,

T 3 ~X(I±) = ± ~X(I±) , T 8 ~X(I±) = 0 ,

T 3 ~X(V±) = ±1
2
~X(V±) , T 8 ~X(V±) = ±

√
3
2
~X(V±) ,

T 3 ~X(W±) = ∓1
2
~X(W±) , T 8 ~X(W±) = ±

√
3
2
~X(W±) .

(3.131)

Noticing also that

ad(ta)ad(tb)X = [ta, [tb, X]] = [ta, tc](T b)cdXd = te(T a)ec(T
b)cdXd = tc(T aT b)cdXd , (3.132)

we find that

~I 2
AV± =

3∑

j=1

[Ij , [Ij , V±]] =
3

4
V± , ~I 2

AW± =
3∑

j=1

[Ij , [Ij ,W±]] =
3

4
W± ,

~I 2
AI± =

3∑

j=1

[Ij , [Ij , I±]] = 2I± , ~I 2
AI3 =

3∑

j=1

[Ij , [Ij , I3]] = 0 .

(3.133)

There is now all the information we need to find out the eigenvalues and the eigenvectors of I3
and Y in the adjoint representation. The vectors V+, W+, and W−, V− form two isodoublets
(I = 1

2), I3 and I± form an isotriplet (I = 1), and Ȳ is an isosinglet (I = 0). In this way the
basis vectors in the adjoint representation can be chosen to be (up to phases and normalisation
factors)

|12 −1
2 ; 1〉 ∝W+ , |12 1

2 ; 1〉 ∝ V+ ,

|1 −1; 0〉 ∝ I− , |1 0; 0〉 ,∝ I3 |1 1; 0〉 ,∝ I+

|0 0; 0〉 ∝ Y ,

|12 −1
2 ;−1〉 ∝ V− , |12 1

2 ;−1〉 ∝W− .
(3.134)

The corresponding weight diagram is shown in Fig. 21. Summarising, the algebra provides a
representation of itself through the linear operators ad(ta).

The important point about the adjoint representation of SU(3) is that it is precisely one of the
representations we were looking for to describe hadrons, namely the one that accomodates the
lightest baryons (see Fig. 18). Since there is no septuplet representation (as we will see shortly),
one is led to predict the existence of an eighth light pseudoscalar meson - the η particle, with
I = Y = 0, which was later observed experimentally.

3.2.6 General representations in a nutshell

If SU(3) is the symmetry we were looking for, then it should also explain the multiplet of baryon
resonances discussed in our introductory remarks and shown in Fig. 17. In order to see if an
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Figure 21: Adjoint representation of SU(3).

appropriate irreducible representation is available, we have to discuss representations of SU(3)
in some generality. As we mentioned above, all irreducible finite-dimensional representations
of SU(3) are equivalent to unitary representations, and can be reconstructed from irreducible
Hermitian representations of the algebra. Let us assume that we have one such representation
of the algebra, and let us figure out what it looks like.

Since I3 and Y are Hermitian and commute, they can be diagonalised simultaneously by
means of a unitary transformation, so we can take them diagonal without loss of generality (if
they are not diagonal, we are going over from one unitary representation to another equivalent
unitary representation). It is useful to notice that, introducing the notation V3 = I3

2 + 3Y
4 =

I3
2 +

√
3Ȳ
2 and W3 = − I3

2 + 3Y
4 = − I3

2 +
√
3Ȳ
2 , the three sets {Ij}, {Vj} and {Wj} all satisfy

the SU(2) commutation relations. Taking now any eigenvector |i3, y〉, we can build towers of
eigenvectors by repeated application of the ladder operators, since [~x ≡ (i3, y)]

~HE
(j)
± |i3, y〉 = ([ ~H,E

(j)
± ] + E

(j)
± ~H)|i3, y〉 = (~x± ~α(j))E

(j)
± |i3, y〉 . (3.135)

Since the representation is finite-dimensional, the tower should end at some point, which means
that after applying, say, the raising operators a certain number of times we should get zero. One
can show that there must be a vector |ψ〉 such that I+|ψ〉 = V+|ψ〉 = W+|ψ〉 = 0, and that it
must be unique if the representation is irreducible. This is called the highest weight vector.

Existence of the highest weight can be proved as follows. Let Z = {|φ(i)a 〉} be the set of all the vectors

such that I+|φ(i)a 〉 = 0. This set is nonempty due to the argument above. If we now apply V+ on these

vectors, then one still has I+V+|φ(i)a 〉 = V+I+|φ(i)a 〉 = 0, i.e., all the V k
+ |φ(i)a 〉 are still in Z. Since the

representation is finite-dimensional, for some value of k one must have V k+1
+ |φ(i)a 〉 = 0. Let ka be the

smallest such value for |φ(i)a 〉, and let V ka

+ |φ(i)a 〉 ≡ |φ(iv)a 〉. Consider now repeated applyication of W+

on the |φ(iv)a 〉. One has that V+W
l
+|φ

(iv)
a 〉 = W l

+V+|φ
(iv)
a 〉 = 0, and I+W

l
+|φ

(iv)
a 〉 = [I+,W

l
+]|φ

(iv)
a 〉 =

lW l−1
+ V+|φ(iv)a 〉 = 0. Again invoking the finite dimensionality of the representation, there must be a

smallest la such that W la+1
+ |φ(iv)a 〉 = 0. Let W la

+ |φ(iv)a 〉 ≡ |φ(ivw)
a 〉. The vectors |φ(ivw)

a 〉 are such that

I+|φ(ivw)
a 〉 = V+|φ(ivw)

a 〉 =W+|φ(ivw)
a 〉 = 0.

The highest weight vector |ψ〉 is of course an eigenvector of I3 and Y , since we took them
diagonal, and so an eigenvector of V3 and W3, but it is an eigenvector of ~I 2, ~V 2 and ~W 2 as well.

68



This follows from ~I 2 = I−I+ + I3 + I23 , and analogous formulas for ~V 2 and ~W 2. Let ~xψ = (i, y)
be the vector of eigenvalues of |ψ〉. We can now build other states from |ψ〉 by applying the
lowering operators,

|n1 n2 n3〉 = In1
− V n2

− Wn3
− |ψ〉 , (3.136)

with nj ≥ 0. These are all eigenvectors of ~H with eigenvalue ~xn1 n2 n3 = ~xψ −∑j nj~α
(j), as

one can easily show. Due to the commutation relations, not all them are linearly independent.
Using the commutation relations one can also show that applying I+, V+ orW+ on any |n1 n2 n3〉
one obtains a linear combination of the same vectors. To show that no other state besides the
|n1 n2 n3〉 can be obtained in this way one needs the following observations. Starting from
|ψ〉 and applying I− repeatedly one obtains the vectors |n1 0 0〉, which all satisfy V+|n1 0 0〉 =
W+|n1 0 0〉 = 0. These are all eigenstates of ~I 2 with the same eigenvalue as |ψ〉. Similarly,
one can apply W− repeatedly, obtaining the vectors |0 0n3〉, which all satisfy I+|0 0n3〉 =
V+|0 0n3〉 = 0. These are all eigenstates of ~W 2 with the same eigenvalue as |ψ〉. If we plot all
the states on the (I3, Y ) plane, the states |n1 0 0〉 and |0 0n3〉 form a wedge which is a sort of
boundary for our whole set of states. The eigenvalues corresponding to these states are non-
degenerate, since there are no other states |n1 n2 n3〉 obtained with lowering operators which can

give the same eigenvalue. Next, one can show that E
(j)
+ |n1 n2 n3〉 must be a linear combination

of those |n′1 n′2 n′3〉 such that
∑

k(nk − n′k)~α
(k) = ~α(j). The action of the raising operators then

allows to move between our states by following one of the root vectors ~α(j). This means that
starting from any |n1 n2 n3〉 and applying repeatedly the raising operators, at some point we
will reach a state on the boundary. Due to the properties of those states, we cannot go above
the upper boundary, and we cannot go right of the right boundary, no matter where we start
from. The set of states |n1 n2 n3〉 is therefore invariant under the action of the representatives
of the generators of the algebra.

If there were more than one highest weight, we could repeat this construction for each of them,

and all the sets obtained in this way would be invariant under the action of the representatives of

the generators. By the assumed irreducibility of the representation, this cannot happen, and so the

highest weight must be unique.

Since the representation is finite-dimensional, we cannot go on and apply the lowering operators
forever, and at some point their repeated action must annihilate the state. This is easy to see
for the boundary states: being eigenstates of ~I 2 and ~W 2, they must provide representations
of SU(2), which must be finite-dimensional since we are in a finite-dimensional space. Indeed,
since I3|ψ〉 = i|ψ〉, we must have I2i+1

− |ψ〉 = 0: the upper boundary consists of 2i + 1 states.
Similarly, since W3|ψ〉 = 1

2(−i + 3
2y)|ψ〉 ≡ w|ψ〉, we have that W 2w+1

− |ψ〉 = 0, and we have
2w + 1 states on the right boundary. Moreover, 2i and 2w must be zero or positive integers
to have representations of SU(2), and so 2i ∈ N0 and 2w = −i + 3

2y ∈ N0. Therefore i = n
2

and y = 2
3(i +m) = 1

3(n + 2m), with n,m ∈ N0. To find the remaining part of the boundary,
it is useful to notice that SU(2) representations are symmetric, and are left invariant by the
transformation eiπI2 . This is a consequence of the well-known fact that e−iπI2I3eiπI2 = −I3.
Moreover, since Y commutes with ~I, we have e−iπI2Y eiπI2 = −I3. This is a particular case of

the following general result: if we denote with ~α
(j)
⊥ the unit vector orthogonal to ~α (j), and with
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H(j) = ~α (j) · ~H and H
(j)
⊥ = ~α

(j)
⊥ · ~H, then

[H(j), E(j)
s ] = sE(j)

s ,

[H(j), H
(j)
⊥ ] = [H

(j)
⊥ , E(j)

s ] = 0 ,

[E(j)
s , E

(j)
−s ] = 2sH(j) .

(3.137)

If we now denote with A
(j)
2 = 1

2i(E
(j)
+ − E

(j)
− ), this implies that

e−iπA
(j)
2 H(j)eiπA

(j)
2 = −H(j) ,

e−iπA
(j)
2 H

(j)
⊥ eiπA

(j)
2 = H

(j)
⊥ .

(3.138)

Since the representation must be invariant24 under eiπA
(j)
2 , to each state |~x〉 with ~x = (i3,

√
32y)

must correspond another state |~x ′〉 such that

{

H(j)|~x〉 = ~α (j) · ~x|~x〉
H

(j)
⊥ |~x〉 = ~α

(j)
⊥ · ~x|~x〉

−→
{

H(j)|~x ′〉 = −~α (j) · ~x|~x ′〉
H

(j)
⊥ |~x ′〉 = ~α

(j)
⊥ · ~x ′|~x〉

(3.139)

The set of possible eigenvalues, and thus our plot of the states |n1 n2 n3〉 in the (I3, Ȳ ) plane,
must then be invariant under the reflections

~x→ ~x− 2(~x · ~α (j))~α (j) . (3.140)

This applies in particular to ~α (1) and ~α (3). The composition of two reflections is a rotation:

reflecting first around ~α
(1)
⊥ and then ~α

(3)
⊥ results in ~α (1) → −~α (2), which is a clockwise rotation

of 60◦. If the plot in the (I3, Ȳ ) plane is symmetric under these transformations, so must be its
boundary, which is then determined to be that of an irregular hexagon (which can degenerate
into a triangle), with upper side of length 2i, and with sides of alternating length 2i and 2w.
This completely fixes the shape of our representation. A possible weight diagram is shown in
Fig. 22.

These results can be used, together with uniqueness of the highest weight, to show that any state

can be connected to any other state by the action of the representatives of the algebra. To do so, it

suffices to connect any state to the highest weight by means of raising operators. If for some state this

could not be done, then repeated application of V+ must annihilate the state before the boundary is

reached, for otherwise one could use I+ or W+ to move from there and reach |ψ〉. Let |φ〉 be the state
obtained in this way such that V+|φ〉 = 0. Repeated application of I+ on |φ〉 yields states that are still
annihilated by V+, and before reaching the boundary on must find Ik+1

+ |φ〉 = I+|φ′〉 = 0. Repeated

application of W+ must now yield W l+1
+ |φ′〉 = W+|φ′′〉 = 0 before the boundary is reached. Since

V+|φ′′〉 = W l
+V+|φ′〉 = 0, and I+|φ′′〉 = [I+,W

l
+]|φ′〉 = lW l−1

+ V+|φ′〉 = 0, we have that |φ′′〉 would be

another highest weight, contraddicting irreducibility.

What remains to be done is identify the independent states among the |n1 n2 n3〉 and fix the
degeneracy of each point in the weight diagram. One can show that the degeneracy increase by

24This does not mean that each state is left invariant, but it means that the set of states as a whole is left
invariant.
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Figure 22: Weight diagram for a possible representation of SU(3).

one for each further hexagonal layer, until the first triangular layer is reached: from that point
on the degeneracy does not change anymore. One can further show that states with a given
value of Y can be organised in multiplets with definite ~I 2: starting from the upper boundary,
which is an I = i multiplet with 2i+1 states and Y = y, one the second line Y = y−1 one finds
an I = i+ 1

2 multiplet and a I = i− 1
2 multiplet, for a total of (2i+1+1)+(2i+1−1) = 2(2i+1)

states (as it also results counting from the layers). In general, on line l + 1, where Y = y − l,
one finds one isospin multiplet for each of the values of I between imin and imax, where:

• imax = i + l
2 , as long as l ≤ 2w: this is where the top right part of the boundary ends;

beyond this point, imax = i+ 2w − l
2 ;

• imin = i− l
2 , as long as l ≤ 2i: this is where imin hits zero; beyond this point, imin = l

2 − i;

• when imin = imax the construction ends: this happens when l = 2(i+ w).

Notice that since the highest weight is also an eigenvector of ~V 2 with eigenvalue v, where
2v = i+ 3

2y, by descending from it via V− one must hit zero when applying it 2v + 1 times, so
there cannot be more than 2v + 1 lines. But 2(i + w) = 2i − i + 3

2y = 2v, so there are indeed
2v + 1 = 2(i+ w) + 1 lines.

3.2.7 Obtaining the baryonic multiplets: the “eightfold way”

Let us apply this machinery to obtain again the spin-12 baryon octet, and in an attempt to
reproduce the pattern of the spin-32 baryon resonances. For the octet, the particle in the top
right corner, the proton, has I = I3 =

1
2 and Y = 1, so i = w = 1

2 . From this state we obtain the
neutron, I = −I3 = 1

2 and Y = 1, by applying I−. No further states with Y = 1 are available. If
we now applyW− we obtain a state with I3 = 1 which also has automatically I = 1, and moreover
Y = 0. Applying I− repeatedly we obtain the isospin triplet of the Sigmas, Σ+, Σ0, Σ−, all with
Y = 0 (i.e., S = −1). Applying instead the combination of lowering operators 1

2V− − I−W− on
the proton, we obtain a state with Y = 0, I3 = 0 and such that I+(

1
2V− − I−W−)|p〉 = 0, which

is then an eigenstate of total isospin with I = 0: this is the Λ. Finally, applying V− on the Σ+

we obtain a state with Y = −1 and I3 = 1
2 , which is also automatically an eigenstate of ~I 2:

indeed, since I+|Σ+〉 = W−|Σ+〉 = 0, we have I+V−|Σ+〉 = [I+, V−]|Σ+〉 = W−|Σ+〉 = 0. This
state is then the I3 = 1

2 component of a doublet (I = 1
2) of particles with strangeness S = −2,
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i.e., the Ξ0; the I3 = −1
2 component of the doublet, the Ξ−, is obtained by applying I−. No

further states can be built.
The construction above was just an exercise, since we knew already of the existence of the

octet (i.e., the adjoint) representation. Let us now see if we can accommodate the baryon
resonances. The particle in the top-right corner is the ∆++, which has i = 3

2 and y = 1, and
which we tentatively take as our highest weight |ψ〉. We then have w = 0, so the hexagon
degenerates into an equilateral triangle of side length 2i = 3. Since W−|ψ〉 = 0, one has
automatically that I+V−|ψ〉 = 0 (see above), and so V−|ψ〉 is an eigenstate of ~I 2, with I =
i − 1

2 = 1. The same applies to the states obtained through successive applications of V−
starting from |ψ〉: there are in total three such states, each one an eigenstate of ~I 2 with I = 1.
1
2 , and 0. From these states one obtains isospin multiplets applying I−; each multiplet also has
a definite value of Y . All in all there are the four states with I = 3

2 and Y = 1 obtained from
|ψ〉 via I−; the three states with I = 1 and Y = 0 obtained from V−|ψ〉 via I−; the two states
with I = 1

2 and Y = −1 obtained from V 2
−|ψ〉 via I−; and one state with I = 0 and Y = −2

given by V 3
−|ψ〉. No more states can be constructed: using W− = [V−, I+] on any of these states

gives a linear combination of the others.
In group-thoretical terms, this shows that SU(3) possesses a ten-dimensional representation

– the decuplet. Nine of the states in the decuplet perfectly matched the then-known resonances,
so if the symmetry explanation was true, a tenth particle had to exist, with I = 0, strangeness
S = Y − 1 = −3 and electric charge Q = I3 + 1

2Y = −1. Let us look at the mass pattern
of the resonances: m∆ = 1232 MeV, mΣ∗ = 1384 MeV, mΞ∗ = 1533 MeV, so that mΣ∗ −
m∆ = 152 MeV and mΞ∗ −mΣ∗ = 149 MeV. An educated guess, estimating m(S) = m(∆) +
150 MeV · |S| would place the misterious tenth particle, let us call it Ω−, at a mass of around
mΩ = 1682 MeV.25 Notice that a similar mass formula approximately works for the octet as
well. In 1964 a spin-32 baryon resonance with the predicted properties was indeed observed at a
mass mΩ = 1672 MeV.

The classification of hadron multiplets in terms of irreducible representations of SU(3) goes
under the rather bizarre name of eightfold way, and was proposed by Murray Gell-Mann in
1961. A similar proposal was made independently by Y. Ne’eman, also in 1961. It is also worth
remembering here the model of composite hadrons of S. Sakata and related developments, which
played an important role in suggesting SU(3) as the relevant approximate symmetry.

3.3 From SU(3) to the quark model

Although the eightfold way allowed to nicely classify the existing hadrons, and even predict cor-
rectly the existence of new ones, it could not explain why only certain irreducible representation
appeared in Nature, while other did not. From the group-theoretical point of view all repre-
sentations are good, but Nature showed only baryon octets (like the lightest spin-12 baryons)
and decuplet (like the spin-32 baryonic resonances), and meson octets (like the lightest pseu-
doscalar mesons K, π and η) and singlets (like the pseudoscalar meson η′). Quite surprisingly,
the fundamental and complex conjugate representation do not appear.

On the other hand, it is a well-known result in the theory of representations of SU(3) that
all irreducible representations can be obtained by reducing tensor products of fundamental (3)

25The estimate was done actually through a more accurate formula, the Gell-Mann–Okubo formula, discussed
below.
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and complex conjugate (3̄) representations.26 In particular, the simplest ways to produce an
octet are via the composition 3 ⊗ 3̄ of a fundamental and a conjugate, or via the composition
3⊗ 3⊗ 3 of three fundamentals. Interestingly enough, the first composition produces an octet
and a singlet, 3⊗ 3̄ = 8⊕1, while the second one produces a decuplet, two octets and a singlet,
3⊗3⊗3 = 10⊕8⊕8⊕1. The derivation of these results is discussed below, while here we would
rather focus on what they suggest. The composition of a fundamental and a complex conjugate
representations yields precisely the representations appearing in the classification of mesons,
while the composition of three fundamental representations yields precisely the representations
appearing in the classification of baryons, plus an unobserved singlet representation. Together
with results such as the Gell-Mann–Nishijima formula Q = I3 +

1
2Y = I3 +

1
2(B + S), and the

approximate mass relation m(S) = m(0) + 150 MeV · |S| valid within the octet and decuplet
baryon multiplets (and other results as well), this “naturally” suggests that hadrons are not
elementary, but composite particles,27 built out of three constituents that form a basis for
a fundamental representation of SU(3), and their antiparticles. The elementary constituents
became known as quarks, another bizarre name courtesy of M. Gell-Mann, who used them as
fictitious particles to explain the representations found in hadronic multiplets. The first one to
believe in the physical existence of the hadronic constituents was George Zweig, who called them
“aces” instead, and who developed a nice and correct but quickly dismissed model of hadrons
based on them.

If one assumes that quarks are the elementary constituents of hadrons, one can hope to solve
the representation puzzle using the constraints coming from the exchange symmetry of identical
particles. Before trying that, though, one should be able to assign to the quarks appropriate
values of the various quantum numbers that can reproduce the observed phenomenology, besides
the values of I3 and Y that come from them being a basis for the fundamental representation. We
will denote the three eigenstates of I3 and Y with u, d and s, with eigenvalues assigned according
to Fig. 20, or Tab. 10. The type of quark is called the quark flavour. The corresponding
representatives in the space R

3 where the representation acts are the vectors e(i), i = 1, 2, 3
discussed in Section 3.2.3.

Let us now discuss the other quantum numbers. First of all, since we know that baryon
number must commute with all the SU(3) generators, we can assign a baryon number to quarks,
and the same number to each of them. Since three quarks are required to form a baryon, we
automatically find Bu = Bd = Bs =

1
3 . Next come electric charge and strangeness. As we will

see in a moment, composing representations and reducing them to their irreducible components,
one can find what is the quark content of each baryon. In particular, one finds that the proton
is made of two u and one d quarks, the neutron is made of two d and one u quarks, and the Λ
is made of one u, one d and one s quark. This, together with the experimental results for their
charge and strangeness, and additivity of these quantum numbers, allows to determine the value
of charge and strangeness of each quark:

p : 2Qu +Qd = 1 , 2Su + Sd = 0 ,
n: Qu + 2Qd = 0 , Su + 2Sd = 0 ,
Λ: Qu +Qd +Qs = 0 , Su + Sd + Ss = −1 ,

(3.141)

26Actually the fundamental representation suffices, as we will see below.
27This all look natural from a modern perspective, but when the first proposals in this direction either did not

work out properly, as in Fermi and Yang’s approach, or were initially not accepted, as was the case with Zweig’s
proposal which turned out to be correct after all.
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I I3 Y Q S B

u 1
2

1
2

1
3

2
3 0 1

3
d 1

2 −1
2

1
3 −1

3 0 1
3

s 0 0 −2
3 −1

3 −1 1
3

Table 10: Quantum number assignement of quarks.

from which follows Qu = 2
3 , Qd = Qs = −1

3 , and Su = Sd = 0 and Ss = −1. Since for each
flavour f = u, d, s one has Qf = I3f +

1
2Yf = I3f +

1
2(Bf + Sf ), and since these are all additive

quantities, the Gell-Mann–Nishijima relation and the relation between hypercharge , baryon
number, and strangeness will be automatically satisfied by each baryon.

Quantum Field Theory requires the existence of an antiparticle for each particle, so we have
to introduce the antiquarks ū, d̄, and s̄, to which we must assign the same spin and mass as
the quarks, and minus all the charges, like I3, Y , and baryon number. More precisely, QFT
demands that we associate to them the same representative vector e(i) as the corresponding
particle, so that for each flavour charge conjugation is implemented as Cf = f̄ ,28, and that we
impose that they transform according to the complex-conjugate representation of SU(3). For a
meson made of a quark and an antiquark one will automatically find vanishing baryon number,
and the Gell-Mann–Nishijima and hypercharge/strangeness relations will be satisfied again.

Finally, since the light baryons are s = 1
2 fermions, quarks should be assigned spin s = 1

2 , so
that one can obtain 1

2 out of the composition 1
2 ⊗ 1

2 ⊗ 1
2 = 1

2 ⊕ 1
2 ⊕ 3

2 .
29 In general, any baryon or

antibaryon will be a fermion, since its spin is determined by the composition of three half-integer
quark or antiquark spins, and the two integer relative orbital momenta, and any meson will be
a boson, since its spin is determined by the composition of two half-integer quark/antiquark
spins, and the integer relative orbital momentum.

Now that we are done assigning quantum numbers, it is time to work out explicitly the
composition of SU(3) representations, which we have already used above. The easiest way is to
do it graphically, taking into account that the tensor product of two states will have eigenvalues
of I3 and Y equal to the sum of the eigenvalues of those two states. This is depicted in Fig. 23
for the tensor product of two fundamental representations: we just draw in the (I3, Y )-plane a
triangle corresponding to the first 3, and three more triangles centered on the vertices of the
first one, reaching out to the eigenvalues obtained by adding those of two eigenvectors of the
fundamental representation. We then decompose the result into irreducible representations: here
we are guided by symmetry considerations in assigning states in degenerate (I3, Y )-eigenspaces
to different representations. We then get from the figure that 3⊗3 = 6⊕ 3̄. A similar procedure
shows that 6⊗ 3 = 10⊕ 8, and that 3̄⊗ 3 = 8⊕ 1. Putting everything together

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1 . (3.142)

Irrespectively of the precise form of the linear combinations of products of three quarks cor-
responding to a member of an irreducible representation, the quark content of each hadron
automatically follows from the corresponding values of I3 and Y . Denoting with nu,d,s the

28We could introduce a phase between the representative vectors for particle and antiparticle, which would
result in a corresponding phase in the C transformation, but why make our life more complicated, when we are
free to choose the charge-conjugation phase for non-self-conjugate particles?

29The minimal spin that can be obtained from three spin-n
2
particles is just n

2
: assuming naturally that for the

lightest states the relative orbital angular momenta vanish, one is forced to take n = 1.
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Figure 23: Composing representations of SU(3): 3⊗ 3 = 6+ 3̄.
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Figure 24: Quark content of octet (left) and decuplet (right) baryons.

number of times each flavour appears, since of course nu + nd + ns = 3B with B = 1, and

I3 =
1
2(nu − nd) , Y = 1

3(nu + nd − 2ns) , (3.143)

which can be inverted to give

nu = I3 +
1
2Y +B = I3 +

1
2Y +1 , nu = −I3 + 1

2Y +B − I3 +
1
2Y +1 , ns = B − Y = 1− Y .

(3.144)
This result implies the quark composition of the proton, the neutron and the Λ used above.
Moreover, using the relation 3̄⊗ 3 = 8⊕ 1 we can construct the meson multiplets, and we can
similarly obtain the quark/antiquark composition of each meson, counting each antiquark as
minus one quark, and solving Eq. (3.143) with the constraint nu + nd + ns = 0. This yields

nu = I3 +
1
2Y , nu = −I3 + 1

2Y , ns = −Y . (3.145)

The quark content of octet and decuplet baryons is shown in Fig. 24, while that of octet and
singlet mesons is shown in Fig. 25.

So far we have been essentially working under the assumption of exact SU(3) symmetry,
but we knew from the beginning that this symmetry had to be broken. Postponing a more
careful treatment, here we try to assign masses to the quarks assuming that the binding energy
is negligible compared to the quark masses, and based on the observation that hadronic masses
grow approximately linearly with the absolute value of strangeness. We then set for a baryon
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Figure 25: Quark content of octet and singlet pseudoscalar (left) and vector (right) mesons. The
singlet pseudoscalar is denoted with an empty dot; the physical states coming from the mixing
of the I = 0 octet and of the singlet states in the vector case are denoted with a half-filled dot.

mB = numu + ndmd + nsms. Within an isospin multiplet ∆mB = m1 −m2 = (nu1 − nu2)mu +
(nd1−nd2)md = (nu1−nu2)(mu−md), but since these splittings are known to be very small, we
set in a first approximationmu = md, and thusmB = mu(nu+nd)+msns = 3mu+(ms−mu)|S|.
From the mass splittings we then find ms−mu = 150 MeV, while from the mass of the nucleon
we get 3mu ≈ 940 MeV. We then find mu ≃ md ≈ 300 MeV, ms ≈ 450 MeV. These
masses are very different from the one discussed in the introduction, and are referred to as
constituent masses: the difference with the current masses discussed in the introduction comes
from the fact that actually, contrary to our assumption, most of hadron masses does not come
from the quark masses, but rather from the interaction energy between quarks, as mediated by
gluons. Furthermore, the same estimate would not work with the light pseudoscalar mesons,
since linearity of masses with strangeness is not true in that case. We will return briefly on this
point later on.

What we have discussed above are the basics of the quark model (Gell-Mann, Zweig, 1964).
A few comments are in order. The SU(3) symmetry rotates quark flavours one into another,
and is therefore also called flavour symmetry. It is quite far from being exact, but still quite
close to it to have useful consequences, and to explain baryon masses it is required to introduce
an explicit breaking of the symmetry, through a different assignement of masses to the various
flavours. Since we now know what the microscopic theory of strong interactions is (namely,
QCD), we know exactly what kind of symmetry breaking term will appear. The form of this
term was however guessed correctly before the discovery of QCD, and led to the Gell-Mann–
Okubo formula to be discussed below. Before doing that, however, we have to fix a serious
problem of the quark model.

3.3.1 Wave functions, the problem with statistics, and colour

If the quark model is to properly describe hadrons, it should be possible to assign a wave
function to each baryon consistently with the fact that quarks are fermions, i.e., consistently
with Fermi statistics, and this can hopefully explain why only certain representations appear.
In fact, if different quark flavours are just different states of the same spin-12 particle, then
the baryon wave functions must be totally antisymmetric under the exchange of quarks. Setting
ψ = ψspaceψspinψflavour, and assuming naturally that the lowest-lying states have vanishing orbital
angular momenta, so that the spatial wave function will be symmetric under exchange of the
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quarks, we have to achieve antisymmetry from the spin and flavour parts only.
Let us begin with the decuplet. Since s = 3

2 , the spin wave function must be symmetric. But
we have seen that the flavour content of the ∆++ is uuu, and since the ladder operators do not
change the symmetry properties, we conclude that the flavour wave function is also symmetric
for the decuplet baryons:

∆++ = |uuu〉 ,
∆+ ∝ I−∆

++ ∝ |uud〉+ |udu〉+ |duu〉 ,
Σ∗+ ∝ V−∆

++ ∝ |uus〉+ |usu〉+ |suu〉 ,
Σ∗0 ∝ V 2

−∆
++ ∝ |uss〉+ |sus〉+ |ssu〉 ,

Ω− ∝ V 3
−∆

++ ∝ |sss〉 ,

(3.146)

and similarly for the other states. This is not acceptable for fermions: if anything, our attempt
to solve the representation puzzle seems to go in the wrong direction. On the other hand,
everything else seems to work just fine: how can we solve this contradiction?

Before trying to deal with this, let us note that in flavour space, from the composition
3⊗ 3⊗ 3, we also get a fully antisymmetric singlet,

1

6
(|uds〉+ |dsu〉+ |sud〉 − |usd〉 − |sdu〉 − |dus〉) , (3.147)

and other 16 = 8+8 states with mixed symmetry. To build, e.g., nucleon states, with s = I = 1
2

and zero strangeness, we can start from two quarks in a s = I = 0 state and combine them with
the remaining quark to trivially obtain s = I = 1

2 . The first two quarks yield the antisymmetric
state

1√
2
(| ↑↓〉 − | ↓↑〉) 1√

2
(|ud〉 − |du〉) . (3.148)

In analogy to the decuplet states, let us build a wave function which is overall symmetric in
spin and flavour, and so, at first sight, unacceptable. Picking the neutron, the remaining d
quark can be chosen as the first, the second or the last of the three: denoting with ψij the
antisymmetric flavour wave function of Eq. (3.148) involving quarks i and j, and by φk the
flavour wave function of the k-th quarks, and similarly denoting with ψ̃ij the antisymmetric
spin wave function of Eq. (3.148) involving quarks i and j, and by φ̃k the spin wave function of
the k-th quarks, we can build

ψ12φ3ψ̃12φ̃3 + ψ23φ1ψ̃23φ̃1 + ψ13φ2ψ̃13φ̃2

= |udd; ↑↓↑〉+ |dud; ↓↑↑〉+ |ddu; ↑↓↑〉+ |udd; ↑↑↓〉+ |dud; ↑↑↓〉+ |ddu; ↓↑↑〉
− 2|udd; ↓↑↑〉 − 2|dud; ↑↓↑〉 − 2|ddu; ↑↑↓〉 ,

(3.149)

which is totally symmetric. Note that ψ12+ψ23 = ψ13: the three functions are not independent,
and they should not since we have only two octets in 3⊗3⊗3. Similarly, ψ̃12+ ψ̃23 = ψ̃13, which
again shuld be the case since we have only to spin-12 representations in the decomposition of
1
2⊗ 1

2⊗ 1
2 . Contrary to the s = 3

2 case, here it is possible to construct also a totally antisymmetric
flavour-spin wave function. If one were to stick to the requirements of Fermi statistics, one would
find an octet of s = 1

2 baryons, but a single s = 3
2 baryonic resonance, contrary to experimental

evidence.
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Let us now briefly turn to mesons, where we have no restriction on the symmetry of the wave
function since we are combining quarks and antiquarks. Meson states can have spin 1

2⊗ 1
2 = 0⊕1,

so the ground states with ℓ = 0 are either J = 0 or J = 1 particles. Quantum field theory tells
us that quarks and antiquarks have opposite intrinsic parity, so lowest-lying mesons are either
pseudoscalars or vectors. From 3 ⊗ 3̄ = 8 ⊕ 1 we obtain an octet and a singlet. As long
as we deal with an exact flavour symmetry, the quark content of the pseudscalar and vector
mesons is identical. However, if we look at the quark content of physical particles, we must take
into account that SU(3) is broken down to SU(2)I × U(1)Y , and so the I = 0 states from the
SU(3) octet and the SU(3) singlet can mix. For this reason, mesons are sometimes classified
into nonets, although there is no nine-dimensional irreducible representation of SU(3). It turns
out that while this mixing is small for the pseudoscalars, it is almost maximal for the vectors,
leading to the combinations shown in Fig. 25.

We can now go back to our antisymmetrisation problem, and discuss how that can be solved.
The way out was suggested by Greenberg in 1964: add a further degree of freedom, and ask for
the corresponding part of the wave function to be antisymmetric under quark exchange. To this
extra degree of freedom, called colour, is naturally associated an extra SU(Nc) symmetry. Since
there are no further degeneracies among hadrons masses, neither exact nor approximate, then
not only the colour wave function for baryons must be antisymmetric under exchange, but it in
general it should also be a singlet of SU(Nc), for all hadrons. For Nc colours, the wave function
is then either ǫi1...iNc

or δi1i2 .
30 The wave function δi1i2 corresponds to a fundamental/complex

conjugate pair, and so is appropriate for mesons. The Levi-Civita tensor is instead totally
antisymmetric, and if one assumes that there are Nc = 3 colours one achieves two results at
once: it provides an “explanation” of why it takes three quarks to make a baryon, and one can
combine it with a symmetric flavour/spin wave function to obtain acceptable wave functions
both for the octet and the decuplet baryonic states. Moreover, since one cannot make a totally
antisymmetric spin wave function out of three quarks, then one cannot use the flavour singlet
wave function for baryons: the representation puzzle is then fully solved.

Although the introduction of colour was meant initially to fix the problem of the quark model
with statistics, it later became the basis for the fundamental dynamical theory of strong interac-
tions, i.e., QCD (Gell-Mann, Leutwyler, Fritsch, 1972). Besides using theoretical considerations
to fix it, the number of colours can also be determined experimentally by studying the so-called
Drell-Yan process πN → µ+µ−X, where X stands for any other possible final product besides
the muon pair. The process takes place through annihilation of one of the quarks from the
baryon with the antiquark in the pion into a virtual photon, which subsequently decays into a
muon pair. Since the probability of annihilating into a photon is the same for any quark colour,
the probability of this process is proportional to Nc; experiments show that Nc = 3. Another
experimental confirmation comes from the neutral pion decay process π0 → γγ, which is also
proportional to Nc for the same reasons.

3.3.2 The Gell-Mann–Okubo formula

As last topic in the quark model, we discuss now how one determines the mass splittings in
hadronic multiplets, i.e., how one breaks the SU(3) symmetry in order to reproduce the experi-
mental results. With our modern knowledge of QCD and of the fact that ms ≫ mu,md, while

30More complicated wave functions are also possible, but let us stick to the simplest ones.
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mu ≃ md, we can write down the strong interaction Hamiltonian in the quark rest frame as

〈qi|H|qj〉 =Mij = miδij = diag(mud,mud,ms)

=
2mud +ms

3
1+

mud −ms

3
diag(1, 1,−2) =

2mud +ms

3
1+

mud −ms√
3

λ8 .
(3.150)

At the static level, and at the level of quarks, we then have H = H0+H8, where H0 is an SU(3)
singlet and H8 transforms as the eighth component in the adjoint representation.31 However,
this kind of symmetry-breaking term had been proposed before the discovery of QCD, motivated
by the fact that the breaking had to preserve both isospin and strangeness (or hypercharge,
equivalently). The smallest representation with an element having I = Y = 0 is precisely the
adjoint (i.e., the 8).

In order to obtain a quantitative estimate, we now assume that H8 is a small perturbation
compared to H0, and use the machinery of first-order perturbation theory. Given an exactly
degenerate multiplet of baryons in the SU(3) symmetric case, with H0|B(0)〉 = m(0)|B(0)〉, what
we have to do is to diagonalise the perturbation within the degenerate subspace, i.e., diagonalise
〈B(0)′|H8|B(0)〉. The ground-state baryons consist of an octet and a decuplet, so they cannot be
mixed by the perturbation, and we need worry only about the matrix elements of H8 between
members of a single irreducible representation. As we will now show using representation theory,
the perturbation is diagonal in the basis of isospin and hypercharge eigenstates, so the masses
of physical baryons are given by mB = m(0) + ∆mB with ∆mB = 〈B(0)|H8|B(0)〉. Moreover,
representation theory allows us to determine all the ∆mB in a multiplet up to two unknown
coefficients, which depend on the multiplet and on the details of the interaction.

In order to see this, we will need a few pieces of information about representations, and about
SU(3). First of all consider a generic matrix element 〈B′(R′)|H8|B(R)〉 between baryon states
B and B′ transforming in the representations R and R′, respectively. This object transforms
according to the representation R⊗ R̄′ , since

〈B′(R′)|Û †H8Û |B(R)〉 =
∑

B̃,B̃′

(UR′)∗
B̃′B′(UR)B̃B〈B̃′(R′)|H8|B̃(R)〉 , (3.151)

where Û is the unitary operator effecting flavour rotations on the Hilbert space of states. It is a
general fact that the tensor product R⊗ R̄′ can be decomposed into irreducible representations,
R ⊗ R̄′ =

⊕

R̃ R̃, with a given irreducible representation appearing possibly more than once.
This means that we can write

〈B′(R′)|H8|B(R)〉 =
∑

R̃,i

C
(R̃)
i (R,R′;H8)(T (R̃)

i )B′B , (3.152)

where the T (R̃)
i transform as

∑

B̃,B̃′

(UR′)∗
B̃′B′(UR)B̃B(T

(R̃)
i )B̃′B̃ =

∑

j

(UR̃)ji(T
(R̃)
j )B′B , (3.153)

31This actually remains true in the full dynamical case of QCD, where the symmetry-breaking term is a mass
term proprtional to

∫
d3xψ̄λ8ψ; notice that this is not the eighth generator of the SU(3) symmetry, which is

instead
∫
d3xψ†λ8ψ.
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and the coefficients C
(R̃)
i depend on the representations R and R′, and on the details of the

interaction. Asking for H8 to transform like the eighth member of an octet amounts to set all
these coefficients to zero, except, those corresponding to R̃ = 8 and i = 8. As we said above,
this can happen more than once, but for SU(3) and for R′ = R this cannot happen more than
twice. This means that the most general form of the matrix elements we are interested in reads

〈B′(R)|H8|B(R)〉 = δm1(R)(T (8,1)
8 )B′B + δm2(R)(T (8,2)

8 )B′B , (3.154)

for two independent tensorial structures T (8,j)
8 , and two unknown, multiplet-dependent coeffi-

cients δmj(R). The first structure can obviously be taken to be T (8,1)
8 = T 8

R, since one has

U †
RT

a
RUR = (U8)abT

b
R independently of the representation.

To find the second structure we have to go back to the Gell-Mann matrices, and notice that
the product of any two of them is necessarily of the form

λaλb =
2

3
δab + (ifabc + dabc)λ

c . (3.155)

This follows from the fact that λaλb is still a 3 × 3 complex matrix, which can be written as a
linear combination with complex coefficients of the identity matrix and of Hermitian traceless
matrices, which in turn decomposes into a Hermtian part, symmetric under exchange of a and
b, and an anti-Hermitian part, antisymmetric under exchange of a and b. The coefficient of the
identity is fixed by the normalisation of the Gell-Mann matrices, the fabc are just the structure
constants of the group, and the symbols

dabc =
1
4tr {λa, λb}tc = 2tr {ta, tb}tc (3.156)

are totally symmetric since they are invariant under cyclic permutations of the indices. An
important property is that dabc is invariant under the transformation of all the indices via the
adjoint representation, (U8)a′a(U8)b′b(U8)c′cda′b′c′ = dabc, which entails that Da

R ≡ dabcT
b
RT

c
R

transforms in the adjoint, U †
RD

a
RUR = U †

RdabcT
b
RT

c
RUR = (U8)aa′da′bcT

b
RT

c
R = (U8)aa′D

a′

R . We
then have

〈B′(R)|H8|B(R)〉 = δm1(R)(T
8
R)B′B + δm2(R)(D

8
R)B′B , (3.157)

The values of d8bc are explicitly known, and using them one finds

D8
R = d8bcT

b
RT

c
R = − 1

2
√
3

∑

a

(T aR)
2 +

√
3

2
[(T 1

R)
2 + (T 2

R)
2 + (T 3

R)
2]− 1

2
√
3
(T 8
R)

2

= − 1

2
√
3
CR +

√
3

2

(

~I 2 − 1

4
Y 2

)

.

(3.158)

Here CR =
∑

a(T
a
R)

2 is the quadratic Casimir operator, which commutes with all the generators
and therefore with all the elements of the irreducible group representation. By Schur’s lemma,
it must be proportional to the identity within the multiplet. We then find that the perturbation
is diagonal within a multiplet, and the diagonal terms read

∆mB = 〈B(0)|H8|B(0)〉 =
√
3

2

[

δm1Y + δm2

(

−CR
3

+ I(I + 1)− 1

4
Y 2

)]

. (3.159)
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Putting everything together and redefining appropriately the unknown constants, we obtain

mB = m(0) + 〈B(0)|H8|B(0)〉 = m̃(0) + δm̃1Y + δm̃2

[

I (I + 1)− 1

4
Y 2

]

. (3.160)

It is understood that the coefficients depend on the irreducible multiplet. This is the Gell-
Mann–Okubo mass formula. Let us check it in practice.

Baryon octet For the baryon octet we have (the notation XI,Y is used for particle X):

Λ0,0 : mΛ = m̃(0)

N 1
2
,1 : mN = m̃(0) + δm̃1 +

1

2
δm̃2

Σ1,0 : mΣ = m̃(0) + 2δm̃2

Ξ 1
2
,−1 : mΞ = m̃(0) − δm̃1 +

1

2
δm̃2 ,

(3.161)

Since there are four equations with three unknowns, one can exctract one relation among masses.
This can be taken to be for example

mN +mΞ = 3
2mΛ + 1

2mΣ . (3.162)

Plugging in the experimental values one finds for the LHS the value 2257 MeV, and for the RHS
2270.5 MeV, i.e., the formula is accurate to the percent level.

Baryon decuplet For the decuplet I and Y are linearly related: one immediately sees that
2I − Y is constant, and using e.g. the Ω one finds 2I − Y = 2. This implies

I(I + 1)− 1

4
Y 2 = 2 +

3

2
Y , (3.163)

and so the mass formula boils down to

mB = m̃(0) + δmY . (3.164)

This explains the very accurate linear dependence of decuplet masses on strangeness. In this
case one finds

∆ 3
2
,1 : m∆ = m̃(0) + δm ,

Σ∗
1,0 : mΣ∗ = m̃(0) ,

Ξ∗
1
2
,−1

: mΞ∗ = m̃(0) − δm ,

Ω0,−2 : mΩ = m̃(0) − 2δm ,

(3.165)

from which one can extract two mass relations, e.g.,

m∆ +mΞ∗ = 2mΣ∗ ,

2m∆ +mΩ = 3mΣ∗ ,
(3.166)

which yield LHS=2765 MeV, RHS=2768 MeV and LHS=4136 MeV, RHS=4152 MeV, respec-
tively, i.e., an accuracy of the order of the permille. The mass of the Omega was initially
predicted by means of this type of formula.
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Meson octet For the pseudoscalar meson octet the Gell-Mann–Okubo formula fails disas-
trously. One thing we did not take into account is mixing of the flavour singlet and the flavour
octet, but while this is important for the vector mesons, mixing is quite small for the pseu-
doscalars. However, if one uses the square of the masses, then the analogue of Eq. (3.162),

4m2
K = 3m2

η +m2
π (3.167)

gives on the LHS 0.98 GeV2 and on the RHS 0.92 GeV2, so again a percent level of accuracy.
The reason why the original formula fails can be traced back to the fact that the effect of the
perturbation is not small here, but rather of the same order of the unperturbed masses: in
this cases there is no reason to expect perturbation theory to work well. The reasons why the
formula with the squared masses works well, instead, is hidden in the phenomenon of spontaneous
breaking of chiral symmetry in QCD, a topic beyond the scope of these notes.

4 Weak interactions

As we have discussed in the Introduction, besides the symmetry-rich strong interactions there
are the wildly symmetry-breaking weak ones, mediated by the intermediate vector bosons W±

and Z0. The weak interactions mix the quark flavours through the CKM matrix, so that quark
flavour is no longer a conserved quantity: in particular, strangeness is no more conserved.
Nevertheless, those particular flavour combinations corresponding to electric charge and baryon
number are still exactly conserved. Also isospin is no longer a symmetry.

An important consequence of this is that a few particles that, due to symmetry reasons, are
stable against decay when only electromagnetic and strong interactions are taken into account,
can now decay via weak interactions. For example, in the meson pseudoscalar octet only the π0

was unstable against decay (e.g. π0 → γγ was possible): charged pions could not decay because
of u and d flavour conservation since there is no lighter state with the same flavour content;
the decay into electron plus photon, allowed by phase space considerations only, is forbidden by
lepton number conservation. Similarly, kaons cannot decay due to conservation of strangeness,
since they are the lightest strange particles. With weak interactions at play, pions can decay
since flavour is no more a good quantum number and since there are neutrinos available to
conserve lepton number; kaons can decay since strangeness is no more conserved.

Other symmetries violated by weak interactions are parity P and charge conjugation C,
as first demonstrated by Wu’s experiment in 1956 (after Yang and Lee’s proposal). In this
experiment, polarised nuclei of cobalt 60, 60

27Co (J = 5) undergo β-decay into an excited state of
nichel 60, 6028Ni

∗ (J = 4), which promptly decays electromagnetically to its ground state emitting
two photons:

60
27Co −→ 60

28Ni
∗ + e− + ν̄e ,�60

28Ni + γ + γ
(4.1)

where the fundamental process taking place is the β-decay of the neutron, n→ p e− ν̄e. Cooling
down the cobalt nuclei and putting them in a uniform magnetic field one can make their spin
point in the, say, up direction. Since the electron and the antineutrino are both spin-12 , angular
momentum conservation requires that the nichel nucleus, the electron and the antineutrino are
all polarised in the up direction. Since the nichel nucleus is essentially produced at rest, the
electron and the antineutrino are emitted back-to-back to conserve momentum. If parity were a
symmetry, since spin does not change sign under it while momentum does, it would be equally
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Figure 26: K0–K̄0 oscillations through a pion loop.
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Figure 27: K0–K̄0 oscillations in the modern view.

probable to find electrons emitted in the direction of the nuclear spin and in the direction
opposite to it. Experiment shows that this is not the case, and that electrons are preferentially
emitted in the direction opposite to the nuclear spin. This inequivocably shows violation of
parity. The explanation of this result comes from the fact that antineutrinos only exist with
positive helicity h, where h = ~p·~s

|~p | . If the electron is emitted exactly in the direction opposite
to that of the nuclear spin, then he = −1 and hν̄ = +1, which is all right; if the electron were
emitted exactly in the direction of the nuclear spin, then its helicity would be he = +1, and that
of the antineutrino would be hν̄ = −1, which is impossible.

If we were to study instead the decay of anticobalt into antinichel, we would produce a
positron and an electronic neutrino, which has negative helicity: the same argument as above
shows that positrons would be emitted preferentially in the direction of the nuclear spin instead
of the opposite one: this implies that charge conjugation symmetry is violated as well. However,
if we combined P and C and observed the positron in the parity-reflected world, then we would
again see it being emitted in the direction opposite to the nuclear spin: we might then hope
that the combined CP operation is still a symmetry even in the presence of weak interactions.
For reasons that we will now explain, the optimal place to look for CP violations is the K0,
K̄0 system (and the B0, B̄0 system as well, where the B-mesons are made of down and bottom
(anti)quarks).

The peculiarity of the two neutral K mesons is that they have the same quantum numbers
except for strangeness, and so if strangeness is not anymore a conserved quantity there is nothing
preventing them from mixing. Indeed, even before the modern theory of weak interactions
was formulated, the fact that both the K0 and the K̄0 can decay into two pions implies that
they can oscillate into each other through a virtual pion loop (see Fig. 26). In modern terms,
the oscillation takes place through a second-order process via W -exchange (see Fig. 27). The
existence of oscillations in the neutral kaon system implies that the weak Hamiltonian has non-
vanishing matrix elements between the K0 and the K̄0 states. Notice that these are eigenstates
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of the strong interactions, through which they are produced in the laboratory. Their decay, on
the other hand, proceeds through the weak interactions.

If the kaons could mix but were otherwise stable, the unitary temporal evolution of a kaon
state |ψ(t)〉 would be limited to the kaon subspace,

|ψ(t)〉 = U(t)|ψ(0)〉 = c1(t)|K0〉+ c2(t)|K̄0〉 , (4.2)

and it would therefore be unitary within this subspace. Since kaon decays, the evolution leads
the state outside this subspace, i.e.,

|ψ(t)〉 = U(t)|ψ(0)〉 = c1(t)|K0〉+ c2(t)|K̄0〉+ |R(t)〉 , (4.3)

with |R(t)〉 orthogonal to the kaon states. If we look at the projection of the state at time t on
the kaon subspace and compare it to the state at time 0, which we assume to be in this subspace,
then we would not observe a unitary evolution. Formally, denoting with ΠK the projector on
the kaon subspace,

|ψK(t)〉 ≡ ΠK |ψ(t)〉 = ΠKU(t)|ψ(0)〉 = ΠKU(t)ΠK |ψ(0)〉 = c1(t)|K0〉+ c2(t)|K̄0〉 , (4.4)

and ΠKU(t)ΠK = ΠKe
−iHtΠK is not unitary, where H = Hstrong +Hweak. However, under cer-

tain approximations one can show that ΠKe
−iHtΠK ≃ e−iHeff t with an effective non-Hermitian

Hamiltonian Heff 6= H†
eff : this is the Weisskopf-Wigner approximation. The non-Hermiticity

precisely reflects the fact that kaons can decay. The temporal evolution is then governed by the
equation

i
∂

∂t
|ψK(t)〉 = Heff |ψK(t)〉 , (4.5)

which is most easily solved by finding eigenvalues and eigenvectors of the effective Hamiltonian.
The eigenvalues are in general complex, and the eigenvectors non-orthogonal. Let us denote the
eigenvectors with |KS〉 and |KL〉, subject to the normalisation condition 〈KS |KS〉 = 〈KL|KL〉 =
1, and the corresponding eigenvalues with λS,L = mS,L − i

ΓS,L

2 , with real mS,L and ΓS,L. We
take by convention ΓS ≥ ΓL. If we take |ψ(0)〉 = |ψK(0)〉 = cS |KS〉+ cL|KL〉, then

|ψK(t)〉 = cSe
−i

(

mS−iΓS
2

)

t|KS〉+ cLe
−i

(

mL−iΓL
2

)

t|KL〉 . (4.6)

The real part of the eigenvalues is easily interpreted as the mass of these states, while the
imaginary part is seen to correspond to their decay width. In fact, the norm of the projection
of the state on the kaon subspace is given at time t by the expression

|〈ψK(t)|ψK(t)〉|2 = |cS |2e−ΓSt + |cL|2e−ΓLt + 2Re
{

c∗ScLe
i(mS−mL)te−

ΓS+ΓL
2

t〈KS |KL〉
}

, (4.7)

from which the interpretation of ΓS,L follows. This shows that in general, as far as the decay
process goes, there are two types of kaons, |KS〉 and |KL〉, with different masses mS,L and decay
times Γ−1

S,L, the |KS〉 being shorter-lived than the |KL〉. For this reason, the |KS〉 is named “K-
short”, while the |KL〉 is named “K-long”. Moreover, in general neither KS nor KL coincide
with the strong interaction eigenstates K0 and K̄0, so if the initial state is one of these, it will
have both cS and cL nonzero, and from Eq. (4.6) we see that at some later times it will develop
a component corresponding to the other kaon.
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So far we have discussed oscillation and decay of the neutral mesons in general terms. Let us
now suppose that CP is a symmetry of the weak interactions. This implies that CP commutes
both with the projector ΠK (since it is a symmetry of strong interactions, and the kaon subspace
is a CP eigenspace) and with the full Hamiltonian H. But then, in the approximation we are
working in,

0 = [CP,ΠKe
−iHtΠK ] = [CP, e−iHeff t] , (4.8)

i.e., [CP,Heff ] = 0, and so the two operators can be diagonalised simultaneously. This implies
that CP |KS,L〉 = ηS,L|KS,L〉, with some phases ηS,L. Since K

0 and K̄0 are pseudoscalars, if we
choose phases so that C|K0〉 = |K̄0〉 (recall that QFT requires C2 = 1) then the states

|K1〉 =
1√
2

(
|K0〉 − |K̄0〉

)
, |K2〉 =

1√
2

(
|K0〉+ |K̄0〉

)
, (4.9)

are eigenstates of CP with CP |K1〉 = |K1〉 and CP |K2〉 = −|K2〉. Then KS,L can be identified
with K1,2, and so ηS,L = ±1, and 〈KS |KL〉 = 0. Before 1956 it was known that kaons decayed
into two pions in τS ≃ 0.89 ·10−10s. Since both kaons and pions are spinless, the final state must
have ℓ = 0 and so positive parity32 (−1)ℓη2π = 1, and so positive CP phase as well, CP = 1
(notice that pions have C = 1). A CP = −1 state, on the other hand, cannot decay into two
pions. This lead to identify the CP = 1 state K1 with the KS . A CP = −1 state can decay
instead into three pions, since (−1)0(−1)3 = −1, so we are led to identify K2 with the KL. In
1956 Lederman and collaborators observed kaons decaying into three pions further down the
beam: this was the “long” component of the kaon, with τL = 5.2 · 10−8s.

Let us summarise the situation so far. Kaons are produced via strong interactions as eigen-
states of strangeness K0 and K̄0, that can be expressed in terms of eigenstates of CP as

|K0〉 = 1√
2
(|K1〉+ |K2〉) , |K̄0〉 = − 1√

2
(|K1〉 − |K2〉) . (4.10)

In the decay process, which is governed by weak interactions, strangeness is not conserved
anymore; if CP is still a symmetry, then K1 and K2 are the states with a definite lifetime, and
a beam of kaons will see its K1 component (CP = 1), identified with KS , to decay first (mostly
into two pions),33 and its K2 component (CP = −1), identified with KL, to decay later (mostly
into three pions, never in two pions). We note in passing that the mass difference between “long”
and “short” kaons is really tiny, mL −mS ≃ 3.5 · 10−6 eV.

What if CP were not a symmetry of weak interactions? In this case there would be no reason
for the physical state KL to be a pure CP = −1 state, i.e., to be pure K2, and in general it will
contain a K1 component as well,

|KL〉 =
1

√

1 + |ε|2
(
|K2〉+ ε|K1〉

)
, (4.11)

and down the beam where KS has already decayed we would observe some CP -forbidden decays
in two pions. In 1964 Cronin, Fitch and collaborators, using a very long kaon beam, observed

32Notice that parity is different in the initial and final state.
33Notice that K1 decaying into a three pion state π+π−π0 is possible if angular momentum is chosen properly

in the final state. If we take ℓ = 1 in the π+π0 pair, and ℓ = 1 for the π0 with respect to the center of mass of
the π+π− pair, then we can have J = 0 overall. Under CP , CP |((π+π−)ℓ=1π

0)ℓ=1)〉 = −|((π−π+)ℓ=1π
0)ℓ=1)〉 =

−(−1)1|((π+π−)ℓ=1π
0)ℓ=1)〉, so CP = 1.
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such two-pion decays of the K-long: this was enough to show that CP does not commute with
Heff , and so is violated by weak interactions. This is a rather small violation: experimentally
|ε| = 2.2 · 10−3. This manifestation of CP non-invariance is called indirect CP violation, and
it is due to the physical states not being CP eigenstates. It is also possible to have direct CP
violation: since CP is not anymore a symmetry, even a CP = −1 eigenstate like K2 can decay
in two pions, as the symmetry is not there anymore to forbid this process. Such direct violations
of CP have been actually observed experimentally.

We note in passing that in order to have explicit CP breaking in the Standard Model it is
necessary that the CKM matrix be at least 3× 3, thus requiring the existence of at least three
families of quarks: in this way a CP -violating phase remains in the matrix after all the irrelevant
phases have been reabsorbed in a redefinition of fermion states. Kobayashi and Maskawa then
suggested the existence of a third family even before the existence of the charm quark, completing
the second one, had been taken seriously.

5 Scattering theory

The most important type of experiment in particle physics is the scattering experiment: a bunch
of particles is thrown against a fixed target, or against another bunch of particles, and what
comes out of the collision is carefully analysed. It is an experimental fact that particle states
can be prepared so that the particles are far enough from each other that they do not interact
appreciably, thus travelling essentially undisturbed on straight-line trajectories. This is justified
a posteriori by the fact that interactions are typically short-ranged.34 These states are typically
used as the initial states of scattering experiments. It is another experimental fact that the
state of the system, after a sufficiently long time has elapsed after the collision, looks again like
a state of freely-evolving particles. What is a sufficiently long time in a scattering experiment
depends on the type of interaction, but it is safe to say that no matter how long it is, it is a very
short time on human scales: an estimate of 10−10s for an upper bound is reported in Taylor’s
book. For all practical purposes we can then imagine that the system is prepared in its initial
state in the distant past (formally t = −∞), when particles are far away from each other, and
that observations are made in the distant future (formally t = +∞), when particles are again
far away from each other after having interacted. Observations are made by means of detectors
that measure energy, momentum, electric charge, etc., of the final particles, and which therefore
project the state of the system on some particle state with definite particle content and particle
momenta.

5.1 Formal theory of scattering

Let us discuss a bit more in detail what it means that the state of the system looks like a
freely-evolving particle state. In mathematical terms, this means that as t → −∞ or t → +∞
the exact state of the system, e−iHt|ψ〉, which evolves with the full Hamiltonian, is practically
indistinguishable from freely evolving states e−iH0t|φi and e−iH0t|φf , respectively. This means

34Even the long-ranged electromagnetic interactions are in most of the cases effectively short-ranged in practice,
due to screening effects.
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Figure 28: Schematic depiction of the relation between free and exact evolution of the system
in a scattering process.

that for states |ψ〉 describing a scattering system one has

lim
t→−∞

‖e−iHt|ψ〉 − e−iH0t|φi〉‖ = 0 ,

lim
t→+∞

‖e−iHt|ψ〉 − e−iH0t|φf 〉‖ = 0 ,
(5.1)

for certain |φi,f 〉. A pictorial representation of the situation is given in Fig. 28. Turning the
argument around, this means that if we prepare our system in the distant past in the state
|φi〉, or more precisely if the evolution of the system that we prepare in the distant past looks
for all practical purposes as e−iH0t|φi〉, then the state vector that describes the exact temporal
evolution of the system with the full Hamiltonian will be

|ψ+〉 = lim
t→−∞

eiHte−iH0t|φi〉 . (5.2)

Similarly, if the state we observe in the distant future evolves for all practical purposes like
e−iH0t|φf 〉, then its exact temporal evolution is described by the state vector35

|ψ−〉 = lim
t→+∞

eiHte−iH0t|φf 〉 . (5.3)

The states |ψ+〉 and ψ− are respectively the in and out states corresponding to |φi〉 and |φf 〉,
which we call instead the asymptotic states of the system. Eqs. (5.2) and (5.3) define two
operators, the scattering (or Møller) operators,

Ω± = lim
t→∓∞

eiHte−iH0t . (5.4)

Since the initial state can be prepared as we please, and anything that we want can be measured
in the final state, |φi〉 and |φf 〉 range over a complete set of states describing our system (when

35An alternative viewpoint is that when me make a measurement on the system at time t we are projecting its
state on some definite vector e−iH0t|φf 〉 corresponding to our experimental apparatus, which is then associated
to a freely-evolving projector e−iH0t|φf 〉〈φf |e+iH0t. Its exactly-evolving counterpart is eiHt|ψ+〉〈ψ+|eiHt, and the
two projectors are the same in the limit t→ +∞.
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it is free). From this one can conclude immediately that Ω†
±Ω± = 1. In principle there might

be states of the system that do not look like freely-evolving states as t → ∓∞, and which
would therefore not be accessible in a scattering experiment: we will assume that this is not the
case.36 If so, then for all states |ψ〉 there are asymptotic initial and final states, i.e., the limits

limt→∓∞ eiH0te−iHt exist. These are nothing but the operators Ω†
±, and then since ∀|ψ±〉 ∃|φ±

such that |ψ±〉 = Ω±|φ±, we have

|φ±〉 = Ω†
±Ω±|ψ±〉 = Ω†

±|ψ±〉 ⇒ Ω±Ω
†
±|ψ±〉 = Ω±|φ±〉 = |ψ±〉 , (5.5)

for the full complete set of states |ψ〉. From this we find that Ω±Ω
†
± = 1, and therefore that Ω±

are unitary operators.
What we measure in experiments is not the exact temporal evolution of the system, which

is inaccessible, but rather the transition probability for the initial state to be observed in some
prescribed final state. If we have an initial state described by |ψ+(t)〉 = e−iHt|ψ+〉 → e−iH0t|φi〉
as t→ −∞, and at time Tf we project on the final state |ψ−(t)〉 = e−iHt|ψ−〉 which is such that
|ψ−(t)〉 → e−iH0t|φf 〉 as t→ +∞, the relevant transition amplitude is given by

〈ψ−(Tf )|ψ(Tf )〉 = 〈ψ−|eiHTf e−iHTf |ψ+〉 = 〈ψ−|ψ+〉 , (5.6)

which is time-independent. We can then compute it as follows:

〈ψ−|ψ+〉 , = lim
Tf→+∞

〈ψ−|eiHTf e−iHTf |ψ+〉

= lim
Tf→+∞,Ti→−∞

〈ψ−|eiHTf e−iHTf eiHTie−iHTi |ψ+〉

= lim
Tf→+∞,Ti→−∞

〈φf |eiH0Tf e−iHTf eiHTie−iH0Ti |φi〉

= 〈φf |Ω†
−Ω+|φi〉 ≡ 〈φf |S|φi〉 = Sfi

(5.7)

where we have defined the S-operator, S = Ω†
−Ω+, whose matrix elements Sfi constitute the

S-matrix. The operator S is unitary, being the product of unitary operators, so S†S = SS† = 1.
The S-matrix encodes all the relevant information about scattering processes: from the transition
amplitudes Sfi one can get the transition probabilities Pfi = |Sfi|2, which can be (indirectly)
measured in experiments.

Let us discuss a few important properties of S. First of all, notice that ∀s

eiHsΩ±e
−iH0s = lim

t→∓∞
eiHseiHte−iH0te−iH0s = lim

t→∓∞
eiH(t+s)e−iH0(t+s)

= lim
t→∓∞

eiHte−iH0t = Ω± .
(5.8)

Taking the derivative with respect to s of this relation and then setting s to zero we find the
intertwining relations

HΩ± = Ω±H0 , H0Ω
†
± = Ω†

±H . (5.9)

36In the non-relativistic case these would be the bound states of the system, like, e.g., a hydrogen atom state in
ep scattering. In the relativistic setting the hydrogen atom counts as a particle, although not an elementary one,
that can be used as an initial state or can be seen as a final state in a scattering process, so it does not constitute
a problem.
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It then follows that

H0S = H0Ω
†
−Ω+ = Ω†

−HΩ+ = Ω†
−Ω+H0 ⇒ [H0, S] = 0 , (5.10)

i.e., energy is conserved in a scattering process – as it should. Next, if there is some symmetry
generator G that commutes with both the free and the full Hamiltonians, [G,H0] = [G,H] = 0,
then it will commute with the scattering operators, [G,Ω±] = 0. In particular, interactions
V = H − H0 are usually chosen as to be translationally and rotationally invariant, so for the
momentum ~P and the angular momentum ~J we have

[~P ,Ω±] = [ ~J,Ω±] = 0 . (5.11)

From this it follows immediately that

[~P , S] = [ ~J, S] = 0 , (5.12)

i.e., momentum and angular momentum are conserved in scattering processes – again, as it
should be.

Let us now work out a useful formula for the S operator. Starting from its definition, we
can write

S = Ω†
−Ω+ lim

t2→+∞
lim

t1→−∞
eiH0t2e−iHt2eiHt1e−iH0t1 = lim

t2→+∞
lim

t1→−∞
U(t2, t1) , (5.13)

where U(t2, t1) is a unitary operator. To obtain an explicit expression for it, we will write down
the differential equation that it obey, and solve it subject to the initial condition U(t, t) = 1.
Taking the derivative with respect to t2

∂

∂t2
U(t2, t1) = eiH0t2i(H0 −H)e−iH0t2U(t2, t1) = −ieiH0t2V e−iH0t2U(t2, t1) = −iVI(t2)U(t2, t1) ,

(5.14)
where

VI(t) ≡ eiH0tV e−iH0t . (5.15)

Notice that the temporal evolution is governed by the free Hamiltonian: for this reason, the
subscript I is used to distinguish VI(t) from the operator V (t) = eiHtV e−iHt in the Heisenberg
picture. More on this later. Since U(t2, t1)† = U(t1, t2), taking the derivative with respect to t1
will not teach us anything new. For completeness, we report the result:

∂

∂t1
U(t2, t1) = U(t2, t1)iVI(t1) . (5.16)

The solution of Eqs. (5.14) and (5.16) with the prescribed initial condition is

U(t2, t1) = Texp

{

−i
∫ t2

t1

dt VI(t)

}

=
∞∑

n=0

(−i)n
n!

∫ t2

t1

dτ1 . . .

∫ t2

t1

dτnT {VI(τ1) . . . VI(τn)} ,
(5.17)
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where the time-ordering symbol T places the operators in descending order with respect to time
starting from the left:

T{A1(t1)A2(t2)} = θ(t1 − t2)A1(t1)A2(t2) + θ(t2 − t1)A2(t2)A1(t1) ,

T{A1(t1) . . . An(tn)} =
∑

P

θ(tP (1) − tP (2)) . . . θ(tP (n−1) − tP (n))AP (1)(tP (1)) . . . AP (n)(tP (n)) ,

(5.18)
where the sum is over all the distinct permutations P of {1, . . . , n}. To see that the expression
in Eq. (5.17) is indeed the solution of our equation, we rewrite it identically as follows,

U(t2, t1) =
∞∑

n=0

(−i)n
∫ t2

t1

dτ1

∫ τ1

t1

dτ2 . . .

∫ τn−1

t1

dτn VI(τ1) . . . VI(τn) , (5.19)

where we have used the fact that for a given n all the n! permutations of the times τj give the
same contribution. We then see that t2 appears only as the integration limit of the leftmost
integral, and we then find straightforwardly that

∂

∂t2
U(t2, t1) = −iVI(t2)

∞∑

n=1

(−i)n−1

∫ t2

t1

dτ2 . . .

∫ τn−1

t1

dτn VI(τ2) . . . VI(τn)

= −iVI(t2)
∞∑

n=0

(−i)n
∫ τ1

t1

dτ1 . . .

∫ τn−1

t1

dτn VI(τ1) . . . VI(τn)

= −iVI(t2)U(t2, t1) .

(5.20)

Since it is obvious that it satisfies the initial condition, it is the unique solution of our problem.
In terms of U we can then write Dyson’s formula for the S-operator:

S = U(+∞,−∞) = Texp

{

−i
∫ +∞

−∞
dt VI(t)

}

. (5.21)

As promised, we briefly comment on the I in VI(t). As is well known, quantum mechanics
can be equivalently formulated in the Schrödinger picture, in which states evolve with time as
determined by the (full) Hamiltonian of the system, while observables are independent of time,

Schrödinger: |ψ(t)〉S = e−iHt|ψ(0)〉S , OS , (5.22)

and in the Heisenberg picture, in which states are fixed at their t = 0 value while observables
evolve with time as determined by the (full) Hamiltonian of the system,

Heisenberg: |ψ〉H = |ψ(0)〉S , OH(t) = eiHtOSe
−iHt . (5.23)

There is a third, intermediate picture, known as interaction or Dirac picture, where both the
observables and the states evolve in time, the former with the free Hamiltonian, and the latter
essentially with the interaction part only,

Dirac (interaction picture): |ψ(t)〉I = eiH0te−iHt|ψ(0)〉S , OI(t) = eiH0tOSe
−iH0t . (5.24)

Clearly, expectation values (and thus the physics) is independent of the picture one uses,

S〈φ(t)|OS |ψ(t)〉S = H〈φ|OH(t)|ψ〉H = I〈φ(t)|OI(t)|ψ(t)〉I , (5.25)

as can be explicitly verified.
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5.2 Cross sections

As we discussed already in Section 1.6, the rate at which scattering events happen in a scattering
experiment is governed by the total cross section σ of the process: if a beam of particles of flux
Φ (particles per unit area per unit time) is directed on a target of Nt particles, then the number
of events per unit time is given by the formula ∆Nevents/∆t = σNtΦ. Conversely, to measure
the total cross section of a process one counts scattering event for the given experimental setup
and derives

σ =
∆Nevents

∆tNtΦ
. (5.26)

Instead of counting all the scattering events, one can classify them according to the type and
number of final particles, their momenta and polarisation, and so on, and count how many
events with prescribed features take place. Discrete variables, like number and type of particles
involved and their polarisations, essentially label different scattering processes: let us denote
them collectively with the symbol α. Let ξ instead denote collectively the continuous variables
used to classify the final states, and ∆ξ the size of the range of values around ξ that we decide
to include in our counting. The differential cross section is defined as

∆σα(ξ) =
∆Nevents(α, ξ)

∆t∆ξNtΦ
∆ξ , (5.27)

where now ∆Nevents(α, ξ) are the scattering events happening in the time interval t corresponding
to the values α for the discrete variables and in an interval ∆ξ around ξ of the continuous
variables. In the limit of infinitesimal time and ξ-intervals,

dσα(ξ)

dξ
=
dNevents(α, ξ)

dtdξNtΦ
. (5.28)

A comment about the notation. If one focuses on a certain particle content in the final state,
and chooses to classify the final state according to, e.g., the three momentum components of
particle 1, one would write for the corresponding differential cross section something like

dσ

dp
(1)
1 dp

(1)
2 dp

(1)
3

=
dσ

d3p(1)
. (5.29)

The differentials at the denominator should not be understood as derivatives taken on the
function σ, but rather as the variables according to which we are distributing our events. If we
wanted to know how many events per unit time to expect in corresponding to a certain finite
interval of the final-state variables, then we would have to integrate over these variables. In the

example above, and asking for the momentum components to satisfy |p(1)i | ≤ C, one would have
(D ≡ [−C,C]× [−C,C]× [−C,C])

dNevents

dt

∣
∣
∣
∣
|p(1)i |≤C

= NtΦ

∫

D
d3p

dσ

d3p(1)
, (5.30)

where Nt and Φ depend on the experiment setup.
The cross section is directly related to the transition probability Pfi from an initial state |φi〉

to a final state state |φf 〉, and in fact it is the closest thing to Pfi that we can measure. There are
in fact practical limitations to do measure Pfi directly, most prominently the fact that the initial
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state in one single given scattering process is not known with arbitrary accuracy: the particle
states used in scattering experiments are obtained through practical processes (e.g. acceleration
of particles, preparation of beams) that are affected by inherent uncertainties, which do not
allow an exceedingly accurate determination of the actual wave function of the state. From a
practical point of view, what can be measured is the transition probability averaged over many
experiments, corresponding to many slightly different initial states. Consider now the expression
for a differential cross section. The number of events divided by the number of target particles
and the number of beam particles that have come in contact is the probability that a scattering
event takes place. If we (ideally) use a target with a single scatterer and a beam with a single
particle, ∆Nevents becomes simply the probability Pfi of a single scattering event starting with
a specific initial state with specific final state properties, and so we can write

∆σ =
Pfi

∆tΦ(Nb = 1)
. (5.31)

As we have said above, what is measured in experiments is the transition probability averaged
over slightly different initial states, so it is not a priori clear what Pfi we should use here. Luckily
enough, if the experiment is designed with sufficient care and the initial states are sufficiently
peaked around definite momenta of the particles, then the variation over the initial state turns
out to have no effect, and what gets actually measured is the transition probability between
idealised initial and final momentum eigenstates. We will not discuss the details here, which
requires a detailed calculation using a wave-packet description of the initial and final states and
a careful consideration of how scattering experiment are carried out. We simply reassure the
reader that this can be done, reaching the same conclusions that will be obtained below with a
simpler method.

Eq. (5.28) establishes the starting point for relating theory and experiments: in principle we
can compute the probabilities Pfi from our theories. Quantum mechanics in fact tells us that

Pfi =
|〈φf |S|φi〉|2

〈φf |φf 〉〈φi|φi〉
. (5.32)

In the limit we are interested in, however, that in which initial and final states are momentum
eigenstates, we have to deal with non-normalisable states, for which the formula above makes no
sense. Another problem is that, since S commutes with energy and momentum, it can certainly
be written as

S = 1+ i(2π)4δ(4)(Pf − Pi)M , (5.33)

where we have made explicit the presence of the no-scattering term 1. The formula above,
Eq. (5.32), then contains the square of a Dirac delta, which again makes no sense. To cir-
cumvent these problems we regularise the expression above by putting our system in a finite
four-dimensional box, of time extent T and spatial volume V = L3, and periodic boundary con-
ditions. In this way the allowed momenta become discrete, pj =

2πkj
L with integer kj , |kj | ≤ L/2,

and the corresponding eigenstates are normalisable. Moreover, the four-momentum conserving
Dirac-delta function in S gets replaced by a Kronecker delta, which can be squared with no
complication. However, we have to make sure that when taking the limit of infinite volume
everything will be normalised properly. Is is customary for (infinite-volume) momentum eigen-
states to employ the relativstic invariant normalisation 〈~p ′|~p〉 = (2π)32p0δ(3)(~p ′ − ~p). This fixes
also the normalisation of M in Eq. (5.33). In order for the finite-volume eigenstates |~p〉V to be
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relativistically normalised in the infinite-volume limit we need to impose V 〈~p ′|~p〉V = 2p0V δ
(3)
~p ′,~p,

where the delta is now a Kronecker delta. Indeed, since there is one admissible value of momen-
tum in a cube of volume V/(2π)3, the density of modes is (2π)3/V and so

∑

~p,V → (2π)3/V
∫
d3p

in the infinite-volume limit; from this, the relation between the delta functions follows. Moreover,
to get Eq. (5.33) back in the infinite-volume limit, we have to set

ST,V = 1T,V + iTV δ
(4)
Pf ,Pi

MT,V . (5.34)

Indeed, since TV δ
(4)
Pf ,Pi

→ (2π)4δ(4)(Pf−Pi) by the same argument used above, so that MT,V →
M as T, V → ∞.

We are now ready for the derivation. Let us denote with ∆Pfi the probability to obtain a
final state of particles with prescribed momenta ~p ′

i , starting from an initial state of two particles
with momenta ~p1 and ~p2. We consider only final states that differ from the initial one, f 6= i.
Having in mind the infinite-volume limit, we denote with ∆3p′i = (2π)3/V the size of the “unit
cell” in the phase space of final particle i. Plugging the state normalisation and the regularised
relation Eq. (5.34) in Eq. (5.32) we find, after dropping the no-scattering term,

∆Pfi = (TV )2δ
(4)
Pf ,Pi

|MT,V |2
4p01p

0
2V

2

∏

j

1

2p′0j V

∆3p′iV
(2π)3

. (5.35)

For large V, T we can replace MT,V with M and combine one factor V T with the Kronecker
delta to obtain a Dirac delta. We get

∆Pfi −→
T

V

|MT,V |2
4p01p

0
2

(2π)4δ(4)(Pf − Pi)
∏

j

1

2p′0j

∆3p′i
(2π)3

. (5.36)

Since we are looking at an elementary process involving only two particles, there is only one
particle in the target and one particle in the beam, which has therefore a flux Φ = v

V , where v is
the beam particle velocity. The time it takes for the process to complete is T . The differential
cross section corresponding to ∆Pfi is thus ∆σ = ∆Pfi/(TΦ) = ∆PfiV/(Tv). Using Eq. (5.36),
we find

∆σ =
∆Pfi
TΦ

= (2π)4δ(4)(Pf − Pi)
|Mfi|2
4p01p

0
2v

∏

j

∆3p′i
2p′0j (2π)

3
. (5.37)

All factors of V, T cancelled, and we can finally take the limit T, V → ∞ to conclude that

dσ = (2π)4δ(4)(Pf − Pi)
|Mfi|2
4p01p

0
2v

∏

j

d3p′i
2p′0j (2π)

3
= (2π)4δ(4)(Pf − Pi)

|Mfi|2
4p01p

0
2v
dΦ(n) . (5.38)

Here dΦ(n) is the infinitesimal invariant-volume element of the n-particle phase space,

dΦ(n) =
∏

j

d3p′i
2p′0j (2π)

3
(2π)4δ(4)(Pf − Pi) . (5.39)

The discussion here was done in the laboratory frame in which one of the particles is at rest,
but we would rather have a Lorentz-invariant definition of the cross section. To this end, notice
that in the lab frame p01p

0
2v = E1vm2 = |~p1|m2, which is equal to the following Lorentz-invariant
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Figure 29: Collider experiment.

quantity evaluated in the lab frame, |~p1|m2 =
√

(p1 · p2)2 − p21p
2
2. To make Eq. (5.38) manifestly

invariant we then write it as

dσ

dΦ(n)
=

|Mfi|2

4
√

(p1 · p2)2 − p21p
2
2

. (5.40)

The invariance is manifest since if we are able to construct a Lorentz-invariant theory with a
Lorentz-invariant S-operator, then the matrix element Mfi will be Lorentz-invariant thanks to
our choice of a relativistically invariant normalisation for the momentum eigenstates.

For completeness, let us briefly discuss collider experiments. In this case there are two beams
of particles directed at each other, usually circulating in opposite directions on the same circular
trajectory. The beams are typically built out of several bunches of particles, each bunch having
Nb1 and Nb2 in beam 1 and beam 2, respectively. In the period T that it takes to go around the
whole circle (which we take to be the same for the two beams), two bunches will cross twice, so
the frequency at which they collide is 2/T . If the beams have the same cross-sectional Ab and
velocity v, over the time T/2 there will be Nb1Nb2 pairs of particles possibly interacting with
each other,37 and so σ

Ab
Nb1Nb2 scattering events. In each beam there is typically a large number

of bunches, NB1 and NB2, for each of which the same considerations apply. The number of
events per unit time will then be

∆Nevents

∆t
=

2

T

NB1NB2Nb1Nb2

Ab
σ = Lσ , (5.41)

where L is the luminosity delivered by the collider. The analogue of Eq. (5.26) reads then

σ =
1

L
∆Nevents

∆t
, (5.42)

and similarly for the differential cross section.
To make further progress, a detailed theory to compute Mfi is needed. This is the purpose

of quantum field theory.

37We are neglecting here the loss of particles coming from the scattering events that actually take place: if the
cross section of the process is small, so will be this loss, and it will be possible to neglect it for some time.
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6 Basics of Quantum Field Theory

It is a fact of Nature that particles can be created or destroyed, not just in the way in which a
proton and an electron are created by the dissolution of a hydrogen atom, but also out of the
blue as in, say, the pion decay π+ → µ+νµ. The formalism of quantum mechanics does not allow
to describe such processes: to each particle in the game corresponds a wave function, how can
that just appear or disappear? This limitation of quantum mechanics is not really a problem
in the non-relativistic, low-energy regime where this theory applies. Indeed, to create an extra
electron-positron pair starting from a proton-antiproton pair, we need for the proton energy in
the CM frame to satisfy E ≥ mp +me, which results into β & 0.1, i.e., proton and antiproton
should travel at c/10 to produce a pair of the lightest leptons. At high energies, however, particle
production and annihilation become important, and we have to devise a method to describe these
processes. Such method must take into account the principles of special relativity, so must lead
to Lorentz-invariant results, and should also be quantum-mechanical in Nature, if we are to
describe the microscopic world.

6.1 Fock space

The first step is to develop the kinematics, starting from the simplest case of free particles. Free
many-particle states are not only an easy starting point for the theoretical development, but
they are also of practical relevance since they describe the initial and final states of scattering
processes. Let us consider a system of non-interacting bosons, more specifically one type of
spinless bosons of mass m. The most general state of such a system is obtained from the linear
superposition of states with an arbitrary number n of particles with definite momenta, i.e.,
eigenstates of the momentum operator. A basis for the Hilbert space of this system is thus
{|~p1, . . . , ~pn〉}n=0,1,...,∞, where the n = 0 state |0〉 is the vacuum state, where no particle is
present. It is an experimental fact that particles of the same type are indistinguishable, and in
the case of bosons their quantum state vector must be left invariant by any permutation P of
the particle labels,

|~pP(1), . . . , ~pP(n)〉 = |~p1, . . . , ~pn〉 , (6.1)

i.e., they have to obey Bose-Einstein statistics. Formally, these states are obtained from the
one-particle states |~p 〉 by fully symmetrising their n-fold tensor product,

|~p1, . . . , ~pn〉 =
1

n!

∑

P

|~pP(1)〉 ⊗ . . .⊗ |~pP(n)〉 . (6.2)

The space generated by this basis is called the Fock space of the system. Since energy and
momentum are related by the dispersion relation E2 = ~p 2 + m2, the one-particle vectors are
actually eigenvectors of the four-momentum operator Pµ,

Pµ|~p 〉 = pµ|~p 〉 , (6.3)

where p0 =
√

~p 2 +m2. It follows of course that the n-particle states are four-momentum
eigenvectors as well.

Basis vectors are usually normalised according to

〈~p ′|~p〉 = (2π)32p0δ
(3)(~p ′ − ~p) , (6.4)
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for one-particle states, and with the appropriate symmetric generalisation for many-particle
states,

〈~p ′
1, . . . , ~p

′
n′ |~p1, . . . , ~pn〉 = δn′n

∑

P

n∏

j=1

(2π)32p0jδ
(3)(~p ′

P(j) − ~pj) . (6.5)

The vacuum state is instead normalised to 1,

〈0|0〉 = 1 . (6.6)

While eigenvectors corresponding to different eigenvalues have automatically a vanishing scalar
product, the diagonal elements in Eq. (6.4) are somewhat arbitrary. The choice made in Eq. (6.4)
is the relativistic invariant normalisation, which takes the same form in any inertial reference
frame. Indeed, since Lorentz symmetry will be implemented through unitary transformations
on our Hilbert space, and since they will transform the four-momentum operator Pµ as a four-
vector, we must have U(Λ)|~p〉 = c~p(Λ)|Λ~p〉, with obvious meaning of the notation, and with
c~p(Λ) some phase. It then follows, if we set 〈~p ′|~p〉 = N(~p)δ(3)(~p ′ − ~p), that

N(~p )δ(3)(~p ′ − ~p) = 〈~p ′|~p〉 = 〈~p ′|U(Λ)†U(Λ)|~p〉 = c~p ′(Λ)∗c~p(Λ)〈Λ~p ′|Λ~p〉
= N(Λ~p )δ(3)(Λ~p ′ − Λ~p) .

(6.7)

Since ~p ′ = ~p implies p′0 = p0, Λ~p ′ = Λ~p implies the four-vector relation Λp′ = Λp, which
is true if and only if p′ = p. The last delta function in Eq. (6.7) is thus proportional to
δ(3)(~p ′ − ~p). To find the proportionality constant, recall that a generic (proper orthocronous)
Lorentz transformation is obtained combining rotations and boosts along, say, the 1 direction.
For rotations, one autoamtically has invariance of the delta function, so we can focus on the
1-boosts only. We have (Λp)0 = γ(p0 − βp1), (Λp)1 = γ(p1 − βp0), and so

δ((Λp)′1 − (Λp)1) = δ(γ[(p′1 − p1)− β(p′0 − p0)]) =

∣
∣
∣
∣

∂γ(p1 − βp0)

∂p1

∣
∣
∣
∣

−1

δ(p′1 − p1)

= p0|γ(p0 − βp1)|−1δ(p′1 − p1) =
p0

(Λp)0
δ(p′1 − p1) .

(6.8)

From this we conclude that in general we must have

N(Λ~p )

(Λp)0
=
N(~p )

p0
. (6.9)

The simplest way to achieve this is to set N(~p ) ∝ p0. The same argument shows the invariance
under Lorentz transformations of the integration measure

dΩp ≡
d3p

(2π)32p0
. (6.10)

We now define the creation and annihilation operators as follows. The creation operator a(~p)†

is defined via
a(~p)†|~p1, . . . ~pn〉 ≡ |~p, ~p1, . . . ~pn〉 . (6.11)
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the annihilation operator a(~p) is defined as the adjoint of a(~p)†. It is easy to show, using the
definition Eq. (6.11) and the relations Eq. (6.5) that

a(~p)|~p1, . . . ~pn〉 =
n∑

j=1

(2π)32p0jδ
(3)(~pj − ~p )|~p1, . . . , ~pj−1, ~pj+1, . . . ~pn〉 . (6.12)

These operators allow us to change as we please the particle content of a state. In particular,
since we cannot remove particles from the vacuum, we must have a(~p )|0〉 = 0 ∀~p. This is the
unique state in Fock space for which this happens, so this feature singles it out. Any other state
can be obtained from the vacuum by repeated application of creation operators,

|~p1, . . . ~pn〉 ≡ a(~p1)
† . . . a(~pn)

†|0〉 . (6.13)

This allows us to give an equivalent characterisation of Fock space. First of all, notice that the
symmetry under permutations of the indices of the multiparticle states implies that

[a(~p ), a(~q )] = [a(~p )†, a(~q )†] = 0 . (6.14)

Next, using Eqs. (6.11) and (6.12) and the relations Eq. (6.5), one finds that

[a(~p ), a(~q )†] = (2π)32p0δ(3)(~p ′ − ~p ) . (6.15)

Fock space is the basis for an irreducible representation of the commutator algebra Eq. (6.14)–
(6.15) in which the number operator,

N =

∫
d3p

(2π)32p0
a(~p )†a(~p ) . (6.16)

is diagonal. Indeed, N is a positive Hermitian operator, which we can diagonalise; since appli-
cation of the annihilation operator on an eigenvector leads to a new eigenvector with eigenvalue
decreased by one, as a consequence of Eq. (6.15), at some point we must get zero. The state
which is annihilated by all annihilation operators is unique if the representation is irreducible.
The construciton of the other states is then straightforward.

The creation and annihilation operators allow us to write a compact expression for the energy
and momentum operators. As we have mentioned above, the eigenvalue of the number operator
decreases by one under application of an annihilation operator, and correspondingly it increases
by one when we apply a creation operator. This follows from the following results,

[a(~p )†a(~p ), a(~q )] = [a(~p )†, a(~q )]a(~p ) = −(2π)32p0δ(3)(~q − ~p )a(~p ) ,

[a(~p )†a(~p ), a(~q )†] = a(~p )†[a(~p ), a(~q )†] = (2π)32p0δ(3)(~q − ~p )a(~p )† ,
(6.17)

which characterises a(~p )†a(~p ) as a number-density operator. Given that energy and momentum
are additive quantities for free particles, we immediately find that the total four-momentum
operator is given by

Pµ =

∫
d3p

(2π)32p0
pµa(~p )†a(~p ) . (6.18)

The numerator in the integration measure in Eqs. (6.16) and Eq. (6.18) is fixed by our choice
of normalisation. The integration measure,

dΩp ≡
d3p

(2π)32p0
, (6.19)
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is the one-particle invariant phase-space measure. In general, for any additive quantum number
f(~p) we have that the corresponding operator F reads

F =

∫
d3p

(2π)32p0
f(~p )a(~p )†a(~p ) . (6.20)

There is not much left to say about the Fock space formalism. It is easy to extend it to the case
of several different types of boson, by introducing the corresponding creation and annihilation
operators and imposing the operators for particles of different types commute with each other.
The extension of fermions requires instead that the Fermi-Dirac statistics be imposed on the
states, which requires the introduction of a minus sign in the state vector when we exchange the
labels of any two particles. This reflects on the creation and annihilation operators, which must
now satisfy the following anticommutation relations,

{a(~p ), a(~q )} = {a(~p )†, a(~q )†} = 0 ,

{a(~p ), a(~q )†} = (2π)32p0δ(3)(~p ′ − ~p ) .
(6.21)

We note in passing that these relation lead to Pauli exclusion principle, as no more than one
particle per state can be created. Operators corresponding to different types of fermions are
taken to anticommute with each other. Finally, bosonic and fermionic operators commute with
each other.

6.2 The second quantisation

Quantum mechanics is formulated in a non-relativistic setting, and so has to be properly modi-
fied to be compatible with the tenets of special relativity. In particular, the Schrödinger equation
governing the time evolution of the wave function is not relativistically covariant. It is not diffi-
cult to write down a relativistic analogue of that equation (and that is actually what Schrödinger
did first), and we did that already in Section 1.8: this is the Klein-Gordon equation,

(✷+m2)φ(x) = 0 . (6.22)

This equation, however, leads to inconsistencies (and that is why Schrödinger dropped it initially,
focussing on its non-relativistic limit). First of all, being second-order in time, as well as in
space, it admits negative-energy solutions, which would lead to instabilities, as the system could
always transition to a lower energy state. Secondly, the only probability current with the right
symmetry properties under Lorentz transformations leads to a probability density which is not
positive-definite.

There is a deep reason for the failure of relativistic quantum mechanics. Quantum mechanics
(relativistic or not) describes physical systems in terms of wave functions, which implicitly
assumes that the number and type of particles remains constant in time. This does not reflect
the actual state of things: particles can be created and destroyed in Nature, essentially because
of the mass/energy equivalence relation of special relativity. The appropriate generalisation of
quantum mechanics to the relativistic regime must take this into account.

In order to proceed, we have to rethink the role of the solution to relativistic equations
like Eq. (6.22). The wave function of quantum mechanics is technically a complex field, i.e.,
a complex-valued function defined at every point in space. It is essentially a probability field,
as its modulus square gives the probability density function for the corresponding particle to
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be found at a given point in space at a given time. By contrast, the classical electromagnetic
field describes the strength and orientation of the electric and magnetic field at a given point
in space. However, the quantum hypothesis of Planck (1900) and Einstein (1905) amounts to
assuming that the energy stored in each normal mode (ω,~k) of the field cannot be arbitrary,
but only an integer multiple of the energy quantum ~ω. These quanta are nothing but the
photons, which have all the features of (massless) particles. The quantised version of the elec-
tromagnetic field should therefore describe the excitation or de-excitation of the normal modes,
or equivalently the creation and annihilation of photons. By analogy, we can then think of
“quantising the wave function”, i.e., the probability field, of a particle, so that it will describe
the creation and annihilation of the corresponding type of particles. This procedure is called
second quantisation.38

Having made the case for it, let us now discuss how second quantisation is done. We begin
by associating a field to a particle type, rather than a wave function to a given particle. As
we are still classical at this stage, this is just renaming the object φ = φ(x) appearing in the
Klein-Gordon equation Eq. (6.22). We now solve the equation going over to momentum space,
setting

φ(x) =

∫
d4p

(2π)4
e−ip·xφ̃(p) . (6.23)

In momentum space we find

(p2 −m2)φ̃(p) = 0 ⇒
φ̃(p) = 2πδ(p2 −m2)f(p0, ~p)

=
2π

2ε(~p )

{
δ(p0 − ε(~p ))f(ε(~p ), ~p ) + δ(p0 + ε(~p ))f(−ε(~p ), ~p )

}
,

(6.24)

where ε(~p ) ≡
√

~p 2 +m2. Performing the integration,

φ(x) =

∫
d3p

(2π)32ε(~p )

{

e−i(ε(~p )x
0−~p·~x)f(ε(~p ), ~p ) + ei(ε(~p )x

0+~p·~x)f(−ε(~p ), ~p )
}

=

∫
d3p

(2π)32ε(~p )

{

e−i(ε(~p )x
0−~p·~x)f(ε(~p ), ~p ) + ei(ε(~p )x

0−~p·~x)f(−ε(~p ),−~p )
}

.

(6.25)

We now set dΩp = d3p/[(2π)32p0], where from now on we understand that p0 = ε(~p ), and
furthermore we set a(~p ) = f(ε(~p ), ~p ) and b(~p )† = f(−ε(~p ),−~p ), and write

φ(x) =

∫

dΩp

{

a(~p )e−ip·x + b(~p )†eip·x
}

. (6.26)

So far we have just introduced some fancy notation for the classical solution of the Klein-Gordon
equation. The quantisation step comes now, when promoting the amplitude functions a(~p ) and
b(~p )†, corresponding to the various normal modes, to operators that control the number of
excitations corresponding to that normal mode, i.e., the number of particles with that momen-
tum. We have already met the appropriate operators for this task: they are the creation and

38I mention it here mostly for historical and pedagogical reasons. A better understanding of quantum fields is
achieved ignoring completely the idea of “quantising the wave function”.
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annihilation operators of the previous subsection. We then set

[a(~p ), a(~q )†] = [b(~p ), b(~q )†] = (2π)32p0δ(3)(~p ′ − ~p ) ,

[a(~p ), a(~q )] = [a(~p )†, a(~q )†] = [b(~p ), b(~q )] = [b(~p )†, b(~q )†] = 0 ,

[a(~p ), b(~q )] = [a(~p ), b(~q )†] = [a(~p )†, b(~q )] = [a(~p )†, b(~q )†] = 0 .

(6.27)

These operators act on the Fock space of the particles, which is built by their repeated application
on the vacuum state |0〉, defined by a(~p )|0〉 = b(~p )|0〉 = 0, ∀~p.

Let us stop for a second and assess the situation. By means of a heuristic argument we have
made the wave function of a free system into a quantum field operator built out of creation and
annihilation operators. By itself this is a completely useless gimmick: we already knew how to
describe free particles, with no need for the field operator. It is possible to show that at least
we are not losing anything, i.e., the description in terms of φ(x) is equivalent to that in terms
of creation and annihilation operators. This follows from the identities

a(~p ) =

∫

d3x eip·xi
↔

∂0φ(x) , b(~p ) =

∫

d3x eip·xi
↔

∂0φ(x)
† ,

a(~p )† = −
∫

d3x eip·xi
↔

∂0φ(x)
† , b(~p )† = −

∫

d3x eip·xi
↔

∂0φ(x) ,

(6.28)

where f
↔

∂0g ≡ f(∂0g) − (∂0f)g. Also, we started trying to obtain a quantum relativistic de-
scription of one type of particle, and we ended up with two sets of creation and annihilation
operators. In fact, there is a priori no reason to assume any relation between the a-type and
b-type operators: the classical field φ is generally a complex field, so the positive-frequency com-
ponent f(ε(~p ), ~p ) and the negative-frequency component f(ε(−~p ),−~p ) are independent. If we
assumed that the classical field were real, then the two components would be related by com-
plex conjugation, and after quantisation this would lead to identify a-type and b-type operators,
making the quantum field Hermitian. This is, however, a generally unmotivated restriction.
therefore, in general we will be describe two types of particles with the same mass m.

To understand the importance of the quantum field, and the meaning of the two sets of
creation/annihilation operators, we have to think ahead, and imagine what we would have to
do when trying to build an interacting theory in order to describe the real world. Any attempt
at building such a theory must take into account the constraints coming from experience, which
include Lorentz and translation invariance, and locality and causality of the interaction. Here
we start to see the utility of the quantum field. In principle, we could try to built interactions
out of creation and annihilation operators, but it would be very difficult to ensure locality of
the interactions while working in momentum space. The field φ(x) living in coordinate space is
much better suited for this. Concerning the symmetry properties of the field, these are inherited
from those of the particle states. Indeed, Wigner’s theorem ensures that it will be possible to
realise Lorentz transformations and translations as unitary operators on the Hilbert space of the
particles. For the momentum eigenstates of scalar particles, the effect of these unitary operators
is easy to determine: looking at the same state in different reference frames we would assign t
oit two different values of momenutm related by the Lorentz transformation connecting the two
frames. In formulae,

U(Λ)|~p 〉 = |Λ~p 〉 , (6.29)

up to phases that can always be set to 1 by properly redefining the states. The effect of
translations is even easier to determine: as these are generated by the four-momentum operator,
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one has
U(a)|~p 〉 = e−ia·P |~p 〉 = e−ia·p|~p 〉 . (6.30)

Multiparticle states transform just like the direct product of one-particle states. From this
follows that the vacuum state is invariant under both types of transformations,39

U(Λ)|0〉 = U(a)|0〉 = |0〉 . (6.31)

From Eqs. (6.29)–(6.31) one easily determines the transformation laws of the creation operators:

U(Λ)†a(~p )†U(Λ) = a(Λ−1~p )† , U(a)†a(~p )†U(a) = eia·pa(~p )† , (6.32)

and similarly for b(~p )†. Those of the annihilation operators follow by taking the Hermitian
conjugate if Eq. (6.32). From these relations, and taking into account that the integration
measure is invariant under Lorentz transformations, one finds that

U(Λ)†φ(x)U(Λ) = φ(Λ−1x) ,

U(a)†φ(x)U(a) = φ(x+ a) .
(6.33)

This is precisely how we expect a scalar field to transform under a change of reference frame: if
we define a new set of coordinates via x′ = Λx, the field in the new frame at the point with new
coordinates x′ must to be equal to the field in the old frame at the same point, which in that
frame has coordinates x. In formulae, φ(x) = φ′(x′) = U(Λ)†φ(x′)U(Λ) = U(Λ)†φ(Λx)U(Λ),
which is equivalent to the first equation in Eq. (6.33). The same argument applies to translations:
changing coordinates to x′ = x−a by translating the origin of the reference frame by a, we must
have φ(x) = φ′(x′) = U(a)†φ(x′)U(a) = U(a)†φ(x − a)U(a), which is equivalent to the second
equation in Eq. (6.33). The simplicity of the transformation laws Eq. (6.33) means that it will
be easy to construct operators with prescribed transformation properties out of φ(x), so that it
will not take much of an effort to build a Lorentz-invariant theory.

An extremely useful property of the field φ(x) is that it obeys the so-called microcausality
relations, i.e., the operators provided by the field, or its Hermitian conjugate, or any of its
derivatives, at points x and y will commute if x and y are spacelike-separated. The importance
of this property lies in the fact that if we built observables out of φ, φ†, and their derivatives,
they will automatically commute for spacelike separations, reflecting the fact that measurements
made on the system at spacelike-separated points cannot affect each other (due to the finiteness
of the speed of light), since those points are causally disconnected. Moreover, this property will
be used to prove the Lorentz-invariance of the S-matrix. Let us now show it. We find from
Eq. (6.26) and the commutation relations Eq. (6.27) that [φ(x), φ(y)] = 0 for any pair of points.
Furthermore,

[φ(x), φ(y)†] =
∫

dΩp

∫

dΩq

[

e−i(p·x−q·y) − ei(p·x−q·y)
]

(2π)32q0δ(3)(~p− ~q )

=

∫

dΩp

[

e−ip·(x−y) − eip·(x−y)
]

= ∆(x− y)−∆(y − x) .

(6.34)

39From 〈~p |U(Λ, a)|0〉 = eia·p〈Λ−1~p |0〉 = 0, where U(Λ, a) = U(a)U(Λ), and its generalisation to multiparticle
states, follows that U(Λ, a)|0〉 = eiϕ(Λ,a) |0〉. The phase factors must realise a one-dimensional representation of
the Poincaré group (Lorentz transformations and translations), but the only such representation is the trivial one.
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The function ∆(x),

∆(x) ≡
∫

dΩp e
−ip·x , (6.35)

is a Lorentz-invariant function due to the invariance of the integration measure. Furthermore,
since a spacelike x = (x0, ~x) can always be transformed to (0, ~x ′) by means of a Lorentz trans-
formation, we have

∆(x) =

∫

dΩp e
i~p·~x ′

=

∫

dΩp e
−i~p·~x ′

= ∆(−x) , if x2 < 0 . (6.36)

But then from Eq. (6.37) we get

[φ(x), φ(y)†] = 0 , if (x− y)2 < 0 . (6.37)

If we take the derivative of Eq. (6.34) with respect to x we find

[∂µφ(x), φ(y)
†] = lim

ǫ→0+

1

ǫ
[φ(x+ ǫµ̂)− φ(x), φ(y)†] . (6.38)

If (x − y)2 < 0, then (x + ǫµ̂ − y)2 = (x − y)2 + 2ǫ(x − y)µ + ǫ2µ̂2 will also be negative for
sufficiently small ǫ < ǫ0. Both x and x + ǫµ̂ will then be spacelike-separated from y, and the
commutator will vanish. We then have in general

[∂xµ1 . . . ∂
x
µmφ(x), ∂

y
ν1 . . . ∂

y
νnφ(y)

†] = 0 , if (x− y)2 < 0 , (6.39)

which establishes the microcausality of the field φ.

6.3 Antiparticles

It is now time to explain why in general we should not impose the Hermiticity condition on the
field, thus obtaining a single type of particles. Suppose that we want to describe particles which
have some nonzero additive charge q which is conserved, i.e., the particles are eigenstates of some
Hermitian operator Q that commutes with the Hamiltonian. This includes, e.g., electric charge,
baryon number, and strangeness. Let a(~p )† and a(~p ) be the creation and annihilation operators
associated to these particles. If Q|~p 〉 = q|~p 〉, one can easily determine the commutation relations

[Q, a(~p )] = −qa(~p ) , [Q, a(~p )†] = qa(~p )† . (6.40)

If we have only this type of particles, we are forced to set a(~p ) = ba(~p ) in the construction of
our field, and so

[Q,φ(x)] = −q
∫

dΩp

{

a(~p )e−ip·x − a(~p )†eip·x
}

= −qφ̃(x) . (6.41)

The only way that a Hamiltonian H built out of fields can commute with Q is if it involves the
field φ̃(x) besides φ(x). But

[φ(x), φ̃(y)†] =
∫

dΩp

∫

dΩq [a(~p )e
−ip·x + a(~p )†eip·x, a(~p )†eiq·y − a(~p )e−iq·y]

= ∆(x− y) + ∆(y − x) ,

(6.42)

102



which does not vanish for (x − y)2 < 0. This means that in general we will not be able to
build a Hamiltonian that respects microcausality, unless q = 0. Hermitian fields are therefore
only adequate to describe fully neutral particles. If we want to describe particles that carry any
type of charge we have to try a 6= b. Assigning qa to a-type particles and qb to b-type particles,
Eq. (6.41) becomes in this case

[Q,φ(x)] = −
∫

dΩp

{

qaa(~p )e
−ip·x − qbb(~p )

†eip·x
}

= −qa − qb
2

φ(x)− qa + qb
2

φ̃(x) , (6.43)

and to avoid problems with microcausality we must set qb = −qa. Particles of type b have all
their conserved charges equal in magnitude and opposite in sign to those of particle of type
a, and are usually referred to as their antiparticles. The existence of antiparticles is therefore
forced on us as soon as we subscribe to quantum field theory and we need to describe particles
with nonzero charge.

6.4 Hamiltonian formalism

The properties above are nice and all, but as a matter of fact we are still not even sure that we
are describing a system of particles. To this end, let us begin by noticing that since spacelike-
separated points can be always Lorentz-transformed to equal-time points, it is enough to study
the commutators at equal time to see whether they satisfy microcausality or not. We obviously
have

[φ(x), φ(y)]ET = 0 , [φ(x), ∂0φ(y)]ET = 0 , [∂0φ(x), ∂0φ(y)]ET = 0 , (6.44)

and similarly for the Hermitian conjugate of the field,

[φ(x)†, φ(y)†]ET = 0 , [φ(x)†, ∂0φ(y)
†]ET = 0 , [∂0φ(x)

†, ∂0φ(y)
†]ET = 0 . (6.45)

From Eq. (6.34) we find

[φ(x), φ(y)†]ET =

∫

dΩp

[

ei~p·(~x−~y) − e−i~p·(~x−~y)
]

= 0 , (6.46)

for all ~x, ~y. Here the subscript ET stands for “equal time”, i.e., x0 = y0. Taking the derivative
with respect to y0 and then setting x0 = y0 we find

[φ(x), ∂0φ(y)
†]ET =

∫

dΩp ip
0
[

ei~p·(~x−~y) + e−i~p·(~x−~y)
]

= i

∫

dΩp2p
0ei~p·(~x−~y)

= i

∫
d3p

(2π)3
ei~p·(~x−~y) = iδ(3)(~x− ~y ) .

(6.47)

This does not contradict the argument above, as the commutator is only nonzero for ~x = ~y at
equal times, which is lightlike rather than spacelike separation. Taking the Hermitian conjugate
we obtain

[φ(x)†, ∂0φ(y)]ET = iδ(3)(~x− ~y ) . (6.48)

If we also take the derivative with respect to x0 we get

[∂0φ(x), ∂0φ(y)
†]ET =

∫

dΩp (p
0)2
[

ei~p·(~x−~y) − e−i~p·(~x−~y)
]

=

∫

dΩp (~p
2 +m2)

[

ei~p·(~x−~y) − e−i~p·(~x−~y)
]

= 0 ,

(6.49)
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due to symmetry. All other commutators will automatically vanish for spacelike separations,
because they are obtained from the relations above through spatial derivatives, which keep the
separation spacelike. The case of two or more temporal derivatives is also reduced to these via
the equations of motion.

All in all there are ten commutation relations, and one can prove that assuming the com-
mutation relations for the fields, one can derive the commutation relations for the creation and
annihilation operators, Eq. (6.27). This provides an interesting perspective on the approach
we are following. In fact, Eqs. (6.44)–(6.49) are precisely the commutation relations expected
for a set of canonically-conjugate variables. Taking the field and its Hermitian conjugate at
time x0 = 0 and all space points, φ(0, ~x) and φ(0, ~x)† as the canonical coordinates and the
temporal derivatives at x0 = 0, π(0, ~x) = ∂0φ(0, ~x)

† and π(0, ~x)† = ∂0φ(0, ~x), as the canonical
momenta, then Eqs. (6.44)–(6.47) are just the canonical commutation relations, with all coor-
diantes commuting with each other, all momenta commuting with each other, and the nontrivial
commutation relations

[φ(0, ~x), π(0, ~y)] = iδ(3)(~x− ~y) , [φ(0, ~x)†, π(0, ~y)†] = iδ(3)(~x− ~y) . (6.50)

The equations of motion read

∂0φ(t, ~x) = π(t, ~x)† , ∂0π(t, ~x) = (~∇2 −m2)φ(t, ~x)† ,

∂0φ(t, ~x)
† = π(t, ~x) , ∂0π(t, ~x)

† = (~∇2 −m2)φ(t, ~x) ,
(6.51)

and we can easily show that they form a consistent Hamiltonian system, i.e., they can be derived
from a Hamiltonian by means of Hamilton equations,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (6.52)

Up to a constant, the appropriate Hamiltonian is easily found to be

H =

∫

d3x
{

π(x)†π(x) + [~∇φ(x)]† · [~∇φ(x)] +m2φ(x)†φ(x)
}

+ const. . (6.53)

In order to check whether we are doing the right thing or not, we have to make sure that this
Hamiltonian is the Hamiltonian of a system of free spinless bosons. If this is the case, then
we have a nice description of this system in terms of (quantum) Hamiltonian mechanics, as
specified by the canonical commutation relations and by the Hamiltonian Eq. (6.53). We then
plug Eq. (6.26) into Eq. (6.53) to find

∫

d3x
{

π(x)†π(x) + [~∇φ(x)]† · [~∇φ(x)] +m2φ(x)†φ(x)
}

=

∫

d3x
{

∂0φ(x)
†∂0φ(x) + [~∇φ(x)]† · [~∇φ(x)] +m2φ(x)†φ(x)

}

=

∫

d3x

∫

dΩp

∫

dΩq

{

m2
[

a(~p )†eip·x + b(~p )e−ip·x
] [

a(~q )e−iq·x + b(~p )†eiq·x
]

+
∑

µ

(ipµ)(−iqµ)
[

a(~p )†eip·x − b(~p )e−ip·x
] [

a(~q )e−iq·x − b(~p )†eiq·x
]
}

.

(6.54)
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The integration over d3x yields
∫

d3x ei(±)1(p(∓)2q)·x = (2π)3δ(3)(~p(∓)2~q )e
i(±)1(p0(∓)2q0)x0 , (6.55)

which leads to
∫

d3x
{

π(x)†π(x) + [~∇φ(x)]† · [~∇φ(x)] +m2φ(x)†φ(x)
}

=

∫

dΩp
1

2p0

{

(m2 + p20 + ~p 2)
[

a(~p )†a(~p ) + b(~p )b(~p )†
]

+(m2 − p20 + ~p 2)
[

a(~p )†b(~p )†ei2p
0x0 + a(~p )b(~p )e−i2p

0x0
]}

=

∫

dΩp p
0
[

a(~p )†a(~p ) + b(~p )b(~p )†
]

.

(6.56)

This is almost what we want, except that the b-type operators are in the wrong order. Putting
them in the right one would yield

b(~p )b(~p )† = b(~p )†b(~p ) + [b(~p ), b(~p )†] = b(~p )†b(~p ) + (2π)32p0δ(3)(0) , (6.57)

which is clearly nonsense. However, ignoring rigour for a second, the second term in Eq. (6.57) is
a constant, independent of ~p, although an infinite one, and we are free to redefine the Hamiltonian
by dropping it. More rigorously, the product of fields at the same spacetime point was singular
to begin with. If we compute the vacuum expectation value of the product of φ and φ† we find

〈0|φ(x)φ(y)†|0〉 =
∫

dΩp

∫

dΩq〈0|
[

a(~p )e−ip·x + b(~p )†eip·x
] [

a(~q )†eiq·y + b(~p )e−iq·y
]

|0〉

=

∫

dΩp

∫

dΩq e
−ip·xeiq·y〈0|a(~p )a(~q )†|0〉

=

∫

dΩp

∫

dΩq e
−ip·xeiq·y〈0|[a(~p ), a(~q )†]|0〉 =

∫

dΩp e
−ip·(x−y)

= ∆(x− y) ,

(6.58)

which is clearly singular as x → y. Having a singular matrix element, the operator product
φ(x)φ(y)† is singular as x → y, and so, strictly speaking, the integral appearing in Eq. (6.53)
is not well defined, and so is the Hamiltonian. The freedom to redefine it by any constant,
however, allow us to use the following procedure. First of all, we define the normal ordered
product of free fields as the operator obtained by expanding them in creation and annihilation
operators, and reordering all the strings of creation and annihilation operators by placing all
the creation operators to the left, and all the annihilation operators to the right, while leaving
the corresponding coefficients untouched. In the case of two fields discussed here, for example,
we have

: φ(x)φ(y)† : =

∫

dΩp

∫

dΩq :
[

a(~p )e−ip·x + b(~p )†eip·x
] [

a(~q )†eiq·y + b(~p )e−iq·y
]

:

≡
∫

dΩp

∫

dΩq

[

a(~q )†a(~p )e−ip·xeiq·y + a(~p )b(~p )e−ip·xe−iq·y

+b(~p )†a(~q )†eip·xeiq·y + b(~p )†b(~p )eip·xe−iq·y
]

.

(6.59)
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A more inteligible expression can be written if we define the positive-frequency and negative-
frequency components of the field,

φ+(x) ≡
∫

dΩp a(~p )e
−ip·x , φ−(x) ≡

∫

dΩp b(~p )
†eip·x ,

φ∗+(x) ≡
∫

dΩp b(~p )e
−ip·x , φ∗−(x) ≡

∫

dΩp a(~p )
†eip·x ,

(6.60)

so that φ(x) = φ+(x)+φ−(x) and φ(x)† = φ∗+(x)+φ
∗
−(x). In terms of these, the normal-ordered

product is obtained by placing all the positive-frequency components on the right and all the
negative-frequency components on the left,

: φ(x)φ(y)† := φ+(x)φ
∗
+(x) + φ∗−(x)φ+(x) + φ−(x)φ

∗
+(x) + φ−(x)φ

∗
−(x) . (6.61)

Whichever way we do it, it is clear that the normal-ordered product has zero vacuum expectation
value. In the case of two fields, this is the only difference between the two type of products, i.e.,

φ(x)φ(y)† =: φ(x)φ(y)† : +[φ+(x), φ
∗
−(x)] =: φ(x)φ(y)† : +〈0|φ(x)φ(y)†|0〉 . (6.62)

This is particular instance of a general result known as Wick’s theorem, that we will meet
again later. This also means that the normal product of two fields obviously will not have
the singularity we found in the usual product. We then give a more precise definition if the
Hamiltonian using normal-ordering:

H =

∫

d3x :
{

π(x)†π(x) + [~∇φ(x)]† · [~∇φ(x)] +m2φ(x)†φ(x)
}

: . (6.63)

Now everything is well defined and, repeating the calculation, the only difference we find is

H =

∫

dΩp p
0 :
[

a(~p )†a(~p ) + b(~p )b(~p )†
]

:

=

∫

dΩp p
0
[

a(~p )†a(~p ) + b(~p )†b(~p )
]

.

(6.64)

This is the Hamiltonian of a system of scalar particles, and this should convince that we are on
the right track.

6.5 Lagrangian formalism

The main drawback of the Hamiltonian formalism is that, since it singles out time with respect
to space, is not manifestly relativistically-invariant. A manfestly invariant formalism is the
Lagrangian formalism, and we know how to pass from one formalism to the other. Indeed,
given conjugate canonical variables q and p and a Hamiltonian H, the Lagrangian L is obtained
through

L(q, q̇) = q̇p−H(q, p) , (6.65)

where we have to substitute p = p(q, q̇) after finding q̇ = ∂H
∂p . In the case at hand φ̇(t, ~x) =

π(t, ~x)†, so

L =

∫

d3x :
{

2φ̇(x)†φ̇(x)− φ̇(x)†φ̇(x)− [~∇φ(x)]† · [~∇φ(x)]−m2φ(x)†φ(x)
}

:

=

∫

d3x :
{

∂µφ(x)
†∂µφ(x)−m2φ(x)†φ(x)

}

: ,

(6.66)
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where we have made use of normal ordering to avoid short-distance singularities.
At this point we can reverse the logic, and state a simple recipe to quantise the scalar field:

• take the following Lagrangian density

L (x) = : ∂µφ(x)
†∂µφ(x)−m2φ(x)†φ(x) : ; (6.67)

• construct the action integrating over spacetime,

S =

∫

d4xL (x) ; (6.68)

• derive the equations of motion via the variational principle, δS = 0;

• impose the canonical commutation relations among the fields and their conjugate momenta.

What we have just outlined is called canonical quantisation, which we now describe in more
detial.

One starts with a Lagrangian density, which is in general some real function of a set of
fields and their derivatives, L = L (φi(x), ∂µφi(x)).

40 The equations of motion are determined
by means of a variational principle. For a given spacetime region D, one defines the action
functional as follows,

SD[φ] =

∫

D
d4xL (φi(x), ∂µφi(x)) . (6.69)

The dynamics of the field is such that, for any D, the variation of the action vanishes, δSD = 0,
under arbitrary infinitesimal variations δφi of the fields that vanish on the boundary ∂D of
D. The equations of motion that follow from this variational principle are the Euler–Lagrange
equations. Let us derive them. Take a domain D and consider the infinitesimal variation
φi(x) → φ(x) + δφi(x), completely arbitrary except for the request δφ(x) = 0 on ∂D. The
variation of the action reads

δSD[φ] =

∫

D
d4x [L (φi(x) + δφi(x), ∂µφi(x) + ∂µδφi(x))− L (φi(x), ∂µφi(x))] . (6.70)

Retaining only the first order in the variation we find

δSD[φ] =

∫

D
d4x

∑

i

[

δφi(x)
∂L

∂φi
(φi(x), ∂µφi(x)) + ∂µδφi(x)

∂L

∂(∂µφi)
(φi(x), ∂µφi(x))

]

. (6.71)

Making use of Gauss’ theorem we can integrate by parts the second term, obtaining

δSD[φ] =

∫

D
d4x

∑

i

δφi(x)

[
∂L

∂φi
(φi(x), ∂µφi(x))− ∂µ

∂L

∂(∂µφi)
(φi(x), ∂µφi(x))

]

+

∫

∂D
dΣµ δφi(x)

∂L

∂(∂µφi)
(φi(x), ∂µφi(x)) .

(6.72)

40We could include an explicit dependence on x, but we will be interested in translation-invariant Lagrangian
densities only.
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The boundary term vanishes per our request, and if the variation of the action must vanish
for arbitrary variations of the fields in the interior of the domain, then the quantity in square
brackets in the first term must vanish for every x. We then obtain the Euler–Lagrange equations,

∂L

∂φi
− ∂µ

∂L

∂(∂µφi)
= 0 . (6.73)

To obtain the quantised fields we must first solve these equations, and then impose the canonical
commuation relations. To do this we have of course to derive the canonical momenta conjugated
ot the fields, which are defined as follows,

πi ≡
∂L

∂(∂0φi)
. (6.74)

Once we have computed these quantities, we impose the equal-time commutation relations, which
play the role of canonical commutation relations for the the canonical coordinates φi(t, ~x and
their conjugate momenta πi(t, ~x),

[φi(x), φj(y)]ET = [φi(t, ~x), φj(t, ~y)] = 0 ,

[πi(x), πj(y)]ET = [πi(t, ~x), πj(t, ~y)] = 0 ,

[φi(x), πj(y)]ET = [φi(t, ~x), πj(t, ~y)] = iδijδ
(3)(~x− ~y) .

(6.75)

We can now construct the Hamiltonian via the usual Legendre transform,

H =

∫

d3xH (φi(x), πi(x)) =

∫

d3x

{[
∑

i

∂0φi(x)πi(x)

]

− L (φi(x), ∂µφi(x))

}

, (6.76)

where H is the Hamiltonian density, and it is understood that we have to solve for ∂0φi(x)
as a function of φi and πi. The Hamiltonian determines the temporal evolution of fields and
momenta through the Heisenberg equaiton,

φ̇(t, ~x ) = i[H,φ(t, ~x )] , π̇(t, ~x ) = i[H,π(t, ~x )] , (6.77)

which is solved by

φ(t, ~x ) = eiHtφ(0, ~x )e−iHt , π(t, ~x ) = eiHtπ(0, ~x )e−iHt . (6.78)

This completes the canonical quantisation program.41

We may ask again why bother in developing these fancy formalisms. The answer is again
that we are interested in building an interacting theory, and the canonical quantisation program
automatically provides a causal theory. Moreover, the Lagrangian formalism makes manifest
the symmetries of the theory, and guarantees the covariance of the equations of motions. Fur-
thermore, it guarantees the existence of conserved quantities associated to the symmetries of
the theory, and shows us how to build them, via the celebrated Noether’s theorem.

41One should also provide a representation of the algebra Eq. (6.75) on some Hilbert space. Also, appropriate
regularisation procedures, like normal ordering, might have to be used to deal with short-distance singularities.
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6.6 Noether’s theorem

Let us consider a generic Lagrangian and the corresponding action functional,

S =

∫

D
d4xL (φi(x), ∂µφi(x), x) , (6.79)

where for generality we have included also a possible x-dependence. Consider a mapping of
fields and coordinates, φ′i(x

′) = Mi(φj(x), x) and x
′ = X(x), for some transformation (M, X),

which we can think of as mapping from an observer O to another observer O′, and define

S′ =
∫

D′

d4x′ L (φ′i(x
′), ∂′µφ

′
i(x

′), x′) , (6.80)

where the same Lagrangian density is used, but the transformed fields and the transformed
domain D′ = X(D) appear. In general S and S′ differ: if we were to describe the same system
in different reference frames, we will need in general different Lagrangian densities.

We now assume that S′ and S differ only by boundary terms, i.e.,

S′ = S +

∫

D
d4x ∂µF

µ(φi(x), x) , (6.81)

for some function Fµ. In this case, the fields φi and φ
′
i obey the same equations of motion. The

proof is simple. Let φi be a solution of the EOM, and consider an infinitesimal arbitrary variation
δφi(x) of the fields that vanishes on ∂D. Correspondingly, the field φ′i(x

′) = Mi(φj(x), x)
changes by δφ′i(x

′) = Mi(φj(x) + δφj(x), x) − Mi(φj(x), x), which clearly vanishes on ∂D′.
Then from the definition of S′, the usual variational procedure, and Eq. (6.81), we find

δS′ =
∫

D′

d4x′
∑

k

δφ′k(x
′)

[
∂L

∂φk
(φ′i(x

′), ∂′µφi(x
′))− ∂µ

∂L

∂(∂µφk)
(φ′i(x

′), ∂′µφ
′
i(x

′))

]

+

∫

∂D′

dΣ′
µ

∑

k

δφ′k(x
′)

∂L

∂(∂µφk)
(φ′i(x

′), ∂′µφ
′
i(x

′))

=

∫

D′

d4x′
∑

k

δφ′k(x
′)

[
∂L

∂φk
(φ′i(x

′), ∂′µφi(x
′))− ∂µ

∂L

∂(∂µφk)
(φi(x), ∂µφi(x))

]

= δS +

∫

∂D
dΣµ

∑

k

δkφ(x)
∂Fµ

∂φk
(φi(x), x) = δS = 0 .

(6.82)

Since δφ are arbitrary, so are δφ′, and for this equation to be satisfied one needs φ′i to obey the
same equations of motion as φi does.

Eq. (6.81) has another interesting consequence. Consider a continuous family of transforma-
tions for which Eq. (6.81) holds, and take an infinitesimal such transformation,

φ′i(x
′) = φi(x) + δφi(x) = φi(x) + ǫMi(φ, x) ,

x′µ = xµ + δxµ = xµ + ǫAµ(x) .
(6.83)

For future utility, let us note that

φ′i(x) = φ′i(x
′ − δx) = φ′i(x

′)− δxµ∂µφi(x) = φi(x) + δφi(x)− δxµ∂µφi(x)

≡ φi(x) + δφi(x) = φi(x) + ǫ[Mi(φ, x)−Aµ(x)∂µφi(x)] .
(6.84)
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Let us now change variables in S′ back to x,

S′ =
∫

D
d4x

∣
∣
∣
∣
det
µν

∂x′µ

∂xν

∣
∣
∣
∣
L (φ′(x+ δx), ∂µφ

′(x+ δx), x+ δx) , (6.85)

and then expand in ǫ. Notice that to lowest order

∣
∣
∣
∣
det
µν

∂x′µ

∂xν

∣
∣
∣
∣
=

∣
∣
∣
∣
det
µν

(

δµν +
∂δxµ

∂xν

)∣
∣
∣
∣
=

∣
∣
∣
∣
1 + tr

(
∂δxµ

∂xν

)∣
∣
∣
∣
=

∣
∣
∣
∣
1 + ∂µδx

µ

∣
∣
∣
∣
= 1 + ∂µδx

µ . (6.86)

We then find

S′ =
∫

D
d4x

{

L (φ(x), ∂µφ(x), x) + ∂µ [δx
µ
L (φ(x), ∂µφ(x), x)]

+
∑

i

[

δφi(x)
∂

∂φi
L (φ(x), ∂µφ(x), x) + ∂µ(δφi(x))

∂

∂(∂µφi)
L (φ(x), ∂µφ(x), x)

]}

.

(6.87)
Using Eq. (6.81) and integrating by parts we find

0 =

∫

D
d4x

{

∂µ

[

δxµL (φ(x), ∂µφ(x), x) +
∑

i

δφi(x)
∂

∂(∂µφi)
L (φ(x), ∂µφ(x), x)− Fµ(φ, x)

]

+
∑

i

δφi(x)

[
∂

∂φi
L (φ(x), ∂µφ(x), x)− ∂µ

∂

∂(∂µφi)
L (φ(x), ∂µφ(x), x)

]}

.

(6.88)
Imposing now the EOM, and given the arbitrariness of D and ǫ, we conclude that the Noether
current Jµ,

Jµ(φ,∂µφ, x) =

Aµ
L (φ, ∂µφ, x) +

∑

i

[Mi(φ, x)−Aν∂νφi]
∂

∂(∂µφi)
L (φ, ∂µφ, x)− Fµ(φ, x) ,

(6.89)

is a conserved current,
∂µJ

µ = 0 . (6.90)

From the Noether current one can easily construct a conserved Noether charge,

Q =

∫

d3xJ0(x) . (6.91)

A simple calculation shows that

d

dt
Q =

∫

d3x ∂0J
0(x) = −

∫

d3x ∂jJ
j(x) = − lim

V→∞

∫

V
d3x ∂jJ

j(x)

= − lim
V→∞

∫

∂V
dnj J

j(x) = 0 ,

(6.92)
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assuming that the fields are sufficiently well behaved at infinity, so that the flux of J j at infinity
vanishes. Explicitly,

Q =

∫

d3x

[

A0
L +

∑

i

[Mi −Aν∂νφi]
∂

∂(∂0φi)
L − F 0

]

=

∫

d3x

[

A0

(

L −
∑

i

∂0φiπi

)

+
∑

i

[Mi −Aj∂jφi]πi − F 0

]

=

∫

d3x

[
∑

i

[Mi −Aj∂jφi]πi −A0
H − F 0

]

.

(6.93)

Let us consider a few explicit examples.

Translations The simplest case is that of invariance under translations. We assume that no
boundary term appears, which is the case if there is no explicit dependence of the Lagrangian
density on the coordinates (the only case that we will be considering in practice). In this case
the action is obviously invariant. There are four kinds of translations, corresponding to four
Aµ

(ν) = δµν , with Mi = 0. The components of the corresponding conserved currents form the
canonical energy-momentum tensor:

Θµ
ν = −Jµ(ν) =

∑

i

∂νφi
∂L

∂(∂µφi)
− δµνL , Θµν =

∑

i

∂νφi
∂L

∂(∂µφi)
− ηµνL . (6.94)

The reason for this nomenclature is easy: the µ = 0 components of this tensor represent the
energy and momentum density of the system, from which energy and momentum are obtained
via integration:

∫

d3xΘ00 =

∫

d3x
∑

i

∂0φiπi − L =

∫

d3xH = H = P 0 ,

∫

d3xΘ0j =

∫

d3x
∑

i

∂jφiπi = −
∫

d3x
∑

i

∂jφiπi = P j .

(6.95)

Lorentz transformations The next, and most interesting case is that of Lorentz transfor-
mations. The transformation law of coordinates under an infinitesimal transformation is

x′µ = xµ +
1

2
ωρσM

(ρσ)µ
νx

ν , (6.96)

where the matrices M (ρσ) are given by

M
(ρσ)µ

ν = ηρµδσν − ησµδρν . (6.97)

A scalar field φ(x) is, by definition, left invariant by a Lorentz transformation,

φ′a(x
′) = φa(x) , (6.98)
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Plugging Eqs. (6.96) and (6.98) in the general expression for the Noether’s current, Eq. (6.89),
we find the conserved current J (ρσ)µ associated to the transformation with only ωρσ 6= 0,

Mµ,ρσ ≡ J (ρσ)µ =M
(ρσ)µ

νx
ν
L −M

(ρσ) ν
αx

α∂νφa
∂L

∂(∂µφa)

= xρ
(

∂σφa
∂L

∂(∂µφa)
− ηµσL

)

− xσ
(

∂ρφa
∂L

∂(∂µφa)
− ηµρL

)

= xρΘµσ − xσΘµρ ,

(6.99)

where Θµν is the energy-momentum tensor. The conserved charges are
∫

d3xM0,ρσ =

∫

d3x
{
xρΘ0σ − xσΘ0ρ

}
. (6.100)

Internal symmetries Certain theories are symmetric under transformations that involve only
the fields and not the spacetime coordinates. Such transformations, mixing the various fields,
are called internal transformations, and the corresponding symmetry is an internal symmetry.
The simplest such transformations are linear in the fields, i.e.,

δφi(x) = ǫ
∑

j

Kijφj(x) . (6.101)

The corresponding conserved current and charge are easily determined,

Jµint =
∑

ij

∂L

∂(∂µφi)
Kijφj ,

Qint =

∫

d3x
∑

ij

∂L

∂(∂0φi)
Kijφj =

∫

d3x
∑

ij

πiKijφj .

(6.102)

The derivation above is done in the classical case, but it can be extended to the quantum
case as long as one takes carefully into account operator-ordering problems and short-distance
singularity. In the case of free fields it suffices to normal-order the operators. The conserved-
charge operators constructed in this way are seen to generate the corresponding symmetry
transformations on the fields. Indeed, since Q(t) = Q(0) can be taken at any time since it is
conserved, we have that

[iǫQ, φi(x)] =

∫

d3y
[{∑

i

[Mk(φ(y), y)−Aj(y)∂jφk(y)]πk(y)

−A0(y)H (φ(y), π(y))− F 0(φ(y), y)
}

, φi(x)
]

ET

= iǫ

∫

d3y
∑

k

{

Mk(φ(y), y)−Aj(y)∂jφk(y)−A0(y)
H (φ(y), π(y))

∂πk(y)

}

× [πk(y), φi(x)]ET

= ǫ

∫

d3y
∑

k

{

Mk(φ(y), y)−Aj(y)∂jφk(y)−A0(y)∂0φk(y)
}

δikδ
(3)(~x− ~y )

= ǫ[Mi(φ(x), x)−Aν(x)∂νφi(x)] = δφi(x) ,
(6.103)
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and so Q generates the symmetry transformation on the fields. For example,

[Pµ, φ(x)] = −i∂µφ(x) ,
[J (ρσ), φ(x)] = i (xρ∂σ − xσ∂ρ)φ(x) ,

[Qint, φi(x)] = −iKijφj(x) .

(6.104)

These operators are seen to be Hermitian (after the ordering problems are dealt with), as long
as we take the Lagrangian to be Hermitian (starting from a real Lagrangian at the classic level).
Therefore, in the quantum case, Noether’s theorem entails the existence of Hermitian generators
of the continuous symmetries of the Lagrangian. This leads to a unitary representation of the
Poincaré and other symmetry groups, under which the quantum field operators transform as their
classical counterpart. This guarantees that our quantum system exhibits the desired symmetry.

6.7 Interacting fields and the interaction picture

So far we have discussed only the case of free fields. This is of quite limited utility to describe
the real world, where particles interact in various ways. The next task is then that of building a
theory that describes interacting particles while complying with the requests of Poincaré invari-
ance and locality. The use of local fields allows to easily keep track of these two issues, thanks
to their locality and their simple transformation properties. In the framework of field theory,
the method of canonical quantisation is a convenient approach to the problem of building inter-
acting theories: being based on the Lagrangian formalism, it exhibits manifestly the symmetries
of the theory, and the requirement of microcausality is satisfied automatically by imposing the
canonical commutation or anticommutation relations. Moreover, Noether’s theorem allows us
to construct the symmetry generators as operators on the Hilbert space of the system. Unfor-
tunately, it is almost never possible to complete the canonical quantisation program in practice:
the EOM for interacting theories are usually nonlinear, and it is not known how to solve them. It
is therefore necessary to find some approximation technique that allows us to obtain something
useful without having to solve the theory exactly.

In many cases of practical interest, the Hamiltonian of the system can be split into a free part
and an interacting part, H = H0 + V . Here the free part H0 is the Hamiltonian of some system
which we know how to solve explicitly, for example one of the free-field Hamiltonians discussed
in the previous sections. The interaction part V contains every other term appearing in the full
Hamiltonian. The idea is that V can be looked at as a perturbation to the free Hamiltonian
H0, and its effect evaluated in successive steps. This is the perturbative quantisation approach,
which we now discuss in detail.

Let φ(x) be the field that realises the canonical quantisation program, and π(x) its conjugate
momentum. These fields solve the equations of motion and obey the CCR, and therefore

φ(x) = φ(t, ~x ) = eiHtφ(0, ~x )e−iHt , φ̇(t, ~x ) = i[H,φ(t, ~x )] ,

π(x) = π(t, ~x ) = eiHtπ(0, ~x )e−iHt , π̇(t, ~x ) = i[H,π(t, ~x )] .
(6.105)

The full Hamiltonian is obtained from the Lagrangian as usual,

H =

∫

d3x [π(t, ~x )φ̇(t, ~x )− L (φ(t, ~x ), ∂φ(t, ~x ))] , (6.106)

where it is understood that ∂0φ has to be expressed as a function of φ and π. In the cases we
will consider, the full Lagrangian can be written as a free Lagrangian plus an interaction term
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that depends on the fields but not on their derivatives, L = L0 + LI , with LI = LI(φ). It
then follows that as a function of fields and their derivatives, the canonical momenta in the full
interacting theory satisfy

π(φ, ∂φ) =
∂L

∂(∂0φ)
=

∂L0

∂(∂0φ)
= π0(φ, ∂φ) , (6.107)

i.e., they have the same functional form as the conjugate momentum π0 of the free theory; by
the same token, ∂0φ in the full theory will be the same function of φ and π as in the free theory.
From Eq. (6.106) we then find in this case

H = H[φ, π] =

∫

d3x [π(t, ~x )φ̇(t, ~x )− L0(φ(t, ~x ), ∂φ(t, ~x ))− LI(φ(t, ~x ))]

= H0[φ, π]−
∫

d3xLI(φ(t, ~x )) = H0[φ, π] + V [φ] .

(6.108)

In the cases of interest, H is time-independent. On the other hand, after splitting it into H0

and V , these will be separately time dependent. Let us do the splitting at t = 0,

H[φ(t, ~x ), π(t, ~x )] = H[φ(0, ~x ), π(0, ~x )] = H0[φ(0, ~x ), π(0, ~x )] + V [φ(0, ~x )] . (6.109)

From now on, H0 and V will be those obtained using the interacting fields and momenta at
t = 0. Let us now define the fields in the interaction picture as fields evolving in time with the
free Hamiltonian, and coinciding with the full interacting fields (in the Heisenberg picture) at
t = 0,

φin(t, ~x ) ≡ eiH0tφin(0, ~x )e
−iH0t , φin(0, ~x ) = φ(0, ~x ) ,

πin(t, ~x ) ≡ eiH0tπin(0, ~x )e
−iH0t , πin(0, ~x ) = π(0, ~x ) .

(6.110)

At t = 0 the fields in the interaction picture obey the CCR, and since their values at time t is
obtained via a unitary transformation, they will obey the CCR at all times. Since they evolve
in time with the free Hamiltonian and obey the CCR, they automatically obey the Hamilton
equations of motion of the free theory:

φ̇in = i[H0, φin] =
δH0

δπin
, π̇in = i[H0, πin] = −δH0

δφin
. (6.111)

The fields in the interaction picture are then nothing else but free fields, and we already know
exactly what they look like. If, for example, H0 is the free Hamiltonian for the charged scalar
field, we will have that

φin(t, ~x ) =

∫

dΩp

{

a(~p )e−ip·x + b(~p )†eip·x
}

, πin(t, ~x ) = φ̇in(t, ~x ) , (6.112)

where a(~p ), a(~p )†, b(~p ), b(~p )†, are annihilation and creation operators that satisfy the usual
commutation relations. At this point, we define also the interaction Hamiltonian in the interac-
tion picture, VI(t), as

VI(t) ≡ eiH0tV [φin(0, ~x )]e
−iH0t = V [φin(t, ~x )] = −

∫

d3xLI(φin(t, ~x )) . (6.113)

Although it seems that we have made progress, in practice it is so only marginally: for example,
if we want to determine the spectrum of the theory, we still have to solve the same eigenvalue
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problem H|ψ〉 = E|ψ〉, and although we have expressed H as a functional of free fields, this
does not make the eigenvalue problem any easier to solve. On the other hand, if we now assume
that the interaction V is small, for example because it enters the Hamiltonian with some small
numerical prefactor, then we can attack the eigenvalue problem perturbatively, and solve it by
successive approximations.

6.8 Perturbation theory and Wick’s theorem

As in the problem of finding the spectrum of the theory, it takes the exact solution of the theory
to know exactly the S-operator. On the other hand, if V , and so VI , is a small perturbation,
then we can power-expand S,

S = Texp

{

−i
∫ +∞

−∞
dt VI(t)

}

=
∞∑

n=0

(−i)n
n!

∫ +∞

−∞
dτ1 . . .

∫ +∞

−∞
dτnT {VI(τ1) . . . VI(τn)} ,

(6.114)

and compute the S-matrix elements order by order in the perturbation. We already know that
products of fields at the same spacetime point lead to problems with infinities. To get rid of
(part of) these, we take VI to be normal-ordered: this does not change the symmetries of the S
operator. Recalling again Eq. (6.113), and imposing normal ordering, we have that

S = Texp

{

i

∫

d4x : LI(φin(x)) :

}

=
∞∑

n=0

in

n!

∫

d4x1 . . .

∫

d4xn T {: LI(φin(x1)) : . . . : LI(φin(xn)) :} .
(6.115)

This formula is the starting point for the perturbative calculation of scattering cross sections.
In experiments, the case of the final state coinciding with the initial state is practically

impossible to observe, as it would interfere with the experimental setup. Even if it were possible
to consider this case, it would be impossible to distinguish between the lack of any interaction
between the colliding particles, and the presence of some interaction that however gives a final
state coinciding with the initial one. For these reasons, what is studied in practice is the case
of final and initial states being different. It is then customary to explicitly subtract the no-
interaction contribution to the S-matrix. The basic assumption of perturbation theory is that
the exact S-matrix elements 〈ϕf |S|ϕi〉 can be well approximated with the lowest-order terms of
the expansion of S, Eqs. (6.114) and (6.115). Subtracting the non-interaction term we have42

〈ϕf |S − 1|ϕi〉 = 〈ϕf |i
∫

d4x : LI(x) : +
i2

2

∫

d4x1

∫

d4x2T {: LI(x1) :: LI(x2) :}+ . . . |ϕi〉 .
(6.116)

The basic object of interest is therefore the matrix element

〈ϕf |
∫

d4x1

∫

d4x2 . . .

∫

d4xnT {: LI(x1) :: LI(x2) : . . . : LI(xn) :} |ϕi〉 . (6.117)

42We adopt the simplified notation LI(x) = LI(φin(x)).
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The initial and final states are typically taken to be eigenstates of energy and momentum. More
precisely, |ϕi,f 〉 are taken to be eigenstates of the free Hamiltonian H0 and of the free spatial
momentum operators, built out of the free fields φin. Initial and final particle states are therefore
created out of the vacuum states |0〉 by the corresponding creation operators. It is worth noting
that thanks to translation invariance, if we denote with Pi and Pf the total initial and final four
momentum, we find

〈ϕf |
∫

d4x1 . . .

∫

d4xnT {: LI(x1) : . . . : LI(xn) :} |ϕi〉

=

∫

d4x1 . . .

∫

d4xn 〈ϕf |e−ixn·PT {: LI(x1 − xn) : . . . : LI(0) :} eixn·P |ϕi〉

=

∫

d4xne
−ixn·(Pf−Pi)

× 〈ϕf |
∫

d4y1 . . .

∫

d4yn−1T {: LI(y1) : . . . : LI(yn−1) :: LI(0) :} |ϕi〉

= (2π)4δ(4)(Pf − Pi)

× 〈ϕf |
∫

d4y1 . . .

∫

d4yn−1T {: LI(y1) : . . . : LI(yn−1) :: LI(0) :} |ϕi〉 ,

(6.118)

i.e., the momentum-conserving delta function discussed above.
The matrix elements of Eq. (6.117) can be reduced to simpler ones by making use of Wick’s

theorem. In the case of a single Hermitian scalar field, this theorem states the following:

T (ϕ(x1) . . . ϕ(xn)) =

[n2 ]∑

m=0

{

: ϕ(x1) . . . ϕ(xn−2m) : D(xn−2m+1, xn−2m+2) . . . D(xn−1, xn)

+ other pairings

}

.

(6.119)
Here the sum is over the numberm of pairings of coordinates {x1, . . . , xn}, from 0 to the maximal
possible value, i.e., the integer part

[
n
2

]
of n

2 , and over the all the possible such pairings. The
quantity D(x, y), which we will refer to as the contraction of two fields, or the propagator, is
given by

D(x, y) = 〈0|T (ϕ(x)ϕ(y)) |0〉 = 〈0|e−iy·PT (ϕ(x− y)ϕ(0)) eiy·P |0〉
= 〈0|T (ϕ(x− y)ϕ(0)) |0〉 = D(x− y) .

(6.120)

Notice also that for a real field

D(x− y) = 〈0|T (ϕ(x)ϕ(y)) |0〉 = 〈0|T (ϕ(y)ϕ(x)) |0〉 = D(y − x) . (6.121)

We will not give a complete proof of this theorem, and limit ourselves to a sketch of a proof. We
begin with the simplest case, n = 2. In this case, denoting with ϕ± the positive and negative
frequency parts of the field, we have

ϕ(x1)ϕ(x2) = [ϕ+(x1) + ϕ−(x1)][ϕ+(x2) + ϕ−(x2)] =: ϕ(x1)ϕ(x2) : +[ϕ+(x1), ϕ−(x2)]

=: ϕ(x1)ϕ(x2) : +〈0|[ϕ+(x1), ϕ−(x2)]|0〉 =: ϕ(x1)ϕ(x2) : +〈0|ϕ+(x1)ϕ−(x2)|0〉
=: ϕ(x1)ϕ(x2) : +〈0|ϕ(x1)ϕ(x2)|0〉 ,

(6.122)
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where we have made use of the fact that [ϕ+(x1), ϕ−(x2)] is a c-number and is thus identical
to its vacuum expectation value, and further modified its expression by including terms that
annihilate the vacuum and therefore have no effect. Imposing now time ordering, since by the
way the normal-ordered product is defines one has : ϕ(x1)ϕ(x2) :=: ϕ(x2)ϕ(x1) :, we find

T (ϕ(x1)ϕ(x2)) =: ϕ(x1)ϕ(x2) : +〈0|T (ϕ(x1)ϕ(x2)) |0〉 =: ϕ(x1)ϕ(x2) : +D(x1, x2) . (6.123)

The proof for general n proceeds by induction, assuming that the theorem is true for n fields, and
showing that it works for n+1. Writing the product of fields in terms of their positive-frequency
and negative-frequency parts, we obtain a linear combination of strings of these operators. The
key point is that whenever we bring a misplaced negative-frequency component from the right of
the string to its left, passing through a positive-frequency component, we have to pay by adding
a term where the pair of operators is replaced by their contraction. Doing this carefully, one
sees that all the terms in Eq. (6.119) show up.

The result above in Eq. (6.119) is easily generalised to any number of real or complex scalar
fields. Denoting them with ϕa, the only modification to the formula above is that contractions
have to be considered only for fields of the same type, since [ϕa, ϕb] = 0 and [ϕa, ϕ

†
b] = 0 for

a 6= b, and moreover only for ϕa and its adjoint (which is the field itself in the real case), since

for complex fields [ϕa, ϕa] = 0 and [ϕa, ϕ
†
a] 6= 0.

In the case of interest to us, the fields in the time ordered product are already partially normal
ordered. In this case, contractions have to be considered only among fields belonging to different
normal-ordered blocks. This is easily understood from our sketch of a proof: a contraction
appears only when we try to bring a negative-frequency field to the left of a positive-frequency
field, but this never occurs for fields in a normal-ordered block.

6.9 Feynman diagrams

Making use of Wick’s theorem one can compute the S-matrix elements, since the matrix elements
of normal-ordered products of fields are easily obtained: they are given by the products of
the coefficients of the annihilation operators that destroy a particle in the initial state, and
those of the creation operators that destroy a particle in the final state, summed over all the
possible ways in which particles and creation/annihilation operators can be paired. There is a
convenient graphic method that allows to easily keep track of the various terms coming out of
the perturbative expansion due to Wick’s theorem. This is the method of Feynman diagrams,
which we now discuss.

Consider a theory of a Hermitian (real) scalar field, to which we add a polynomial interaction,
e.g., LI(φ) =

λ
4!φ

4. In the interaction picture we find

S = Texp

{
iλ

4!

∫

d4x : φin(x)
4 :

}

=
∞∑

n=0

(iλ)n

(4!)nn!

∫

d4x1 . . .

∫

d4xn T
{
: φin(x1)

4 : . . . : φin(xn)
4 :
}
.

(6.124)

The free field φin(x) describes free neutral scalar particles. Consider now the elastic scattering
of two such particles, and compute perturbatively the corresponding scattering amplitude. To
lowest order,

〈~p ′
1~p

′
2|S − 1|~p1~p2〉 =

iλ

4!

∫

d4x 〈~p ′
1~p

′
2| : φin(x)4 : |~p1~p2〉+O(λ2) . (6.125)
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The matrix element in Eq. (6.125) is easy to compute. Expanding the fields in the normal-ordered
product in creation and annihilation operators, the only contribution will come from the terms in
which there appear as many annihilation operators as in the initial state, and as many creation
operator as in the final state. Any other term has either to many annihilation operators on its
right side, so necessarily annihilating the initial state, or too many creation operators on its left
side, so necessarily annihilating the final state. The creation and annihilation operators can be
picked from any of the four fields, so there will be many such terms; on the other hand, they will
all give the same contribution, since the four fields in the interaction term are equivalent. The
degeneracy factor is easily seen to be 4!: one can freely choose which field will contribute the
annihilation operator a(~p1), destroying particle 1 in the initial state, and this gives a factor of 4;
the annihilation operator a(~p2), destroying particle 2 in the initial state, can be freely taken from
one of the other fields, yielding a factor of 3; the creation operator a(~p ′

1)
†, destroying particle 1

in the final state can now be chosen out of 2 fields, and a(~p ′
1)

† destroying particle 1 in the final
state necessarily comes from the remaining field. We are then left with

〈~p ′
1~p

′
2|S − 1|~p1~p2〉

= iλ

∫

d4x 〈~p ′
1|φin(x)|0〉〈~p ′

2|φin(x)|0〉〈0|φin(x)|~p1〉〈0|φin(x)|~p2〉+O(λ2) .
(6.126)

The remaining matrix elements are easy to compute:

〈0|φin(x)|~p 〉 =
∫

dΩq e
−iq·x〈0|a(~q )|~p 〉 =

∫

dΩq e
−iq·x〈0|a(~q )a(~p )†|0〉

=

∫

dΩq e
−iq·x〈0|[a(~q ), a(~p )†]|0〉 = e−ip·x ,

〈~p |φin(x)|0〉 =
∫

dΩq e
iq·x〈~p |a(~q )†|0〉 =

∫

dΩq e
iq·x〈0|a(~p )a(~q )†|0〉

=

∫

dΩq e
iq·x〈0|[a(~p ), a(~q )†]|0〉 = eip·x .

(6.127)

We then find

〈~p ′
1~p

′
2|S − 1|~p1~p2〉 ≡ i(2π)4δ(4)(p′1 + p′2 − p1 − p2)M(~p1, ~p2; ~p

′
1, ~p

′
2)

= iλ

∫

d4x ei(p
′
1+p

′
2−p1−p2)·x +O(λ2) = iλ(2π)4δ(4)(p′1 + p′2 − p1 − p2) +O(λ2) .

(6.128)

To order λ,
M(~p1, ~p2; ~p

′
1, ~p

′
2) = λ . (6.129)

This is the quantity that enters the cross section.
This example was quite trivial, but nonetheless it shows already an important technical

aspect, namely the need to properly count how many way there are to pair fields in the interaction
Lagrangian and particles in the initial and final states. Here all the fields had to be paired with
particles, but in more general cases we have to use Wick’s theorem, and pair fields with other
fields. Each factor of LI in the perturbative expansion is called a vertex, and in the φ4-theory
described above each vertex comes with a factor of iλ.

Consider now a different type of interaction, like LI(φ) =
λ
3!φ

3, and the same elastic scat-
tering process described above. The O(λ) term in the perturbative expansion does not have
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enough fields, and we need to go at least to the next perturbative order,

〈~p ′
1~p

′
2|S − 1|~p1~p2〉 =

1

2

(
iλ

3!

)2 ∫

d4x

∫

d4y 〈~p ′
1~p

′
2|T

{
: φin(x)

3 :: φin(y)
3 :
}
|~p1~p2〉+O(λ3) .

(6.130)
In order to compute the matrix element we now make use of Wick’s theorem, and write the
time-ordered product as a sum of normal-ordered products times contractions. We do not have
to write the whole expansion, since only a normal-ordered product with four fields will have
a non-vanishing matrix element. The term with four normal-ordered fields comes with one
contraction, which can be done by picking any one of the three fields from each vertex, but not
by picking two fields with the same vertex. There are therefore nine identical terms, and

〈~p ′
1~p

′
2|S − 1|~p1~p2〉 =

1

2

(
iλ

3!

)2

32
∫

d4x

∫

d4y D(x− y)〈~p ′
1~p

′
2| : φin(x)2φin(y)2 : |~p1~p2〉+O(λ3) .

(6.131)
The remaining matrix element is obtained by expanding the fields in creation and annihilation
operator, and keeping only those terms with two creation operators and two annihilation op-
erators. This can be done in different ways: we can take the two annihilation operators from
fields at the same spacetime point, i.e., both from the two φin(y) or both from the two φin(x),
or we can take one from one of the φin(y) and one from one of the φin(x). Let us begin with
the first case, and count how many contributions are there: we can annihilate particle 1 in the
initial state with an annihilation operator from either of the two φin(y), or from either of the two
φin(x). Once we have chosen whether to use fields at y or fields at x for the initial state, we can
still choose to take the creation operator that destroys particle 1 in the final state from either
of the other two fields. Since we are integrating over x and y, they are equivalent and the same
contribution is obtained after integration. All in all we have a factor of 2 × 2 × 2 multiplying
the contribution

〈~p ′
1|φin(x)|0〉〈~p ′

2|φin(x)|0〉〈0|φin(y)|~p1〉〈0|φin(y)|~p2〉 = ei(p
′
1+p

′
2)·xe−i(p1+p2)·y (6.132)

to the matrix element in Eq. (6.131). If we instead take the annihilation operators from fields
at different spacetime points, we can take the annihilation operator for particle 1 in the initial
state from either of the two fields at x, or from either of the two fields at y; once this is done,
we have to take the annihilation operator for particle 2 in the initial state from one of the two
fields at the other spacetime point. This brings about a factor of 2×2×2, since the two vertices
are equivalent. We still have to choose which of the remaining two fields, living at different
spacetime points, will provide the creation operator to annihilate particle 1 in the final state:
this can be the same point from which the annihilation operator for particle 1 came, or that from
which the annihilation operator for particle 2 came. In the first case we get the contribution

〈~p ′
1|φin(x)|0〉〈~p ′

2|φin(y)|0〉〈0|φin(x)|~p1〉〈0|φin(y)|~p2〉 = ei(p
′
1−p1)·xei(p

′
2−p2)·y , (6.133)

which, as we said above, comes with a factor of 2×2×2. In the other case we get the contribution

〈~p ′
1|φin(y)|0〉〈~p ′

2|φin(x)|0〉〈0|φin(x)|~p1〉〈0|φin(y)|~p2〉 = ei(p
′
2−p1)·xei(p

′
1−p2)·y , (6.134)
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again with a factor of 2× 2× 2. Putting everything together, we find

〈~p ′
1~p

′
2|S − 1|~p1~p2〉 =

1

2

(
iλ

3!

)2

(3!)22

∫

d4x

∫

d4y D(x− y)
{

ei(p
′
1+p

′
2)·xe−i(p1+p2)·y

+ ei(p
′
1−p1)·xei(p

′
2−p2)·y + ei(p

′
2−p1)·xei(p

′
1−p2)·y

}

+O(λ3)

= (iλ)2
∫

d4x

∫

d4y D(x− y)
{

ei(p
′
1+p

′
2)·xe−i(p1+p2)·y

+ ei(p
′
1−p1)·xei(p

′
2−p2)·y + ei(p

′
2−p1)·xei(p

′
1−p2)·y

}

+O(λ3) .

(6.135)

To proceed in the calculation, let us write

D(x) =

∫
d4q

(2π)4
e−iq·xD̃(q) , (6.136)

to find

〈~p ′
1~p

′
2|S − 1|~p1~p2〉 = (iλ)2

∫

d4x

∫

d4y

∫
d4q

(2π)4
D̃(q)e−iq·(x−y)

{

ei(p
′
1+p

′
2)·xe−i(p1+p2)·y

+ ei(p
′
1−p1)·xei(p

′
2−p2)·y + ei(p

′
2−p1)·xei(p

′
1−p2)·y

}

+O(λ3)

= (iλ)2
∫

d4x

∫

d4y

∫
d4q

(2π)4
D̃(q)

{

ei(p
′
1+p

′
2−q)·xe−i(p1+p2−q)·y

+ ei(p
′
1−p1−q)·xei(p

′
2−p2+q)·y + ei(p

′
2−p1−q)·xei(p

′
1−p2+q)·y

}

+O(λ3) .

(6.137)

The integration over x and y can be carried out easily, and we get

〈~p ′
1~p

′
2|S − 1|~p1~p2〉

= (iλ)2
∫

d4q

(2π)4
D̃(q)

{

(2π)4δ(4)(p′1 + p′2 − q)(2π)4δ(4)(p1 + p2 − q)

+ (2π)4δ(4)(p′1 − p1 − q)(2π)4δ(4)(p′2 − p2 + q)

+ (2π)4δ(4)(p′2 − p1 − q)(2π)4δ(4)(p′1 − p2 + q)
}

+O(λ3)

= i(2π)4δ(4)(p′1 + p′2 − p1 − p2)
{

iλ2
[

D̃(p1 + p2) + D̃(p′1 − p1) + D̃(p′2 − p1)
]}

.

(6.138)

The quantity in braces is the matrix element Mfi entering the cross section. This calculation
taught us another couple of points, namely the appearance of momentum-conserving delta func-
tions at each vertex once that integration over the vertex position has been carried out, and that
calculations get easier in momentum space. We also should be confident enough with identifying
the different contribution to the scattering amplitude obtained by contracting fields either with
other fields (from a different vertex) or with initial or final-state particles, and with counting
how many times each contribution appears.

A convenient way to obtain the result above with much less effort is via a graphic device
known as Feynman diagram. The procedure is as follows. For a given set of initial and final-state
particles, and at a given perturbative order:
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• draw a point with as many lines coming out of it as fields in an interaction vertex (in
general one should distinguish between different kinds of fields, and between fields and
their adjoints: this is immaterial here);

• associate all the incoming or outgoing particles with one of the lines/fields, and pair all
the remaining lines/fields with each other (in general only certain fields can be associated
with an external particle of a certain type, but here there is only one neutral particle;
for the same reason, while in general each lines is given an orientation, for neutral scalar
particles this does not matter; if a particle or a field always remains unpaired, discard the
graph and go over to the next perturbative order);

• draw all the possible topologically inequivalent diagrams with the prescribed external par-
ticles and number of vertices, i.e., diagrams that cannot be deformed into one another
without cutting or glueing parts of them;

• count how many times a given diagram is obtained by exchanging equivalent lines or
vertices;

• associate a momentum to each line of the graph: if it is a line ending in one of the initial or
final state particles, let the corresponding momentum flow into the graph for initial-state
particles, and out of the graph for final-state particles; if it is an internal line, choose the
direction in which the momentum flows arbitrarily;

• for each external line ending in a particle, include a factor of 1 (it is trivial in this case,
but for particles other than scalars there are nontrivial factors);

• for each internal line include a factor D̃(q), with q the momentum associated to that line;

• for each vertex, write down a factor (2π)4δ(4)(
∑

j pj), where pj are the momenta flowing
into the vertex (this enforces momentum conservation at each vertex);

• integrate over all internal momenta.

The counting part can be tricky sometimes, and it is better done by choosing a certain topology,
which in the case at hand amounts to the connectivity properties of the various vertices, and
counting in how many ways that is achieved by associating fields with the initial and final-state
particles and with other fields.

With these simple rules is a matter of seconds to obtain Eq. (6.138). The only bit that
remains to be done is computing D̃(q). In coordinate space it is straightforward to get

D(x) = 〈0|T (φ(x)φ(y)) |0〉 = 〈0|θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x)|0〉

=

∫

dΩp

∫

dΩq〈0|a(~p )a(~q )†|0〉
[
θ(x0 − y0)e−ip·xeiq·y + θ(y0 − x0)e−ip·yeiq·x

]

=

∫

dΩp

[

θ(x0 − y0)e−ip·(x−y) + θ(y0 − x0)e−ip·(y−x)
]

.

(6.139)

In order to obtain the Fourier transform of this quantity, it is convenient to notice that D(x)
obey the inhomogeneous Klein-Gordon equation. Indeed, we have

∂2x0T (φ(x)φ(y)) = ∂x0
{
T (∂x0φ(x)φ(y)) + δ(x0 − y0)[φ(x), φ(y)]ET

}

= ∂x0T (∂x0φ(x)φ(y)) = T
(
∂2x0φ(x)φ(y)

)
+ δ(x0 − y0)[∂x0φ(x), φ(y)]ET

= T
(
∂2x0φ(x)φ(y)

)
+ δ(x0 − y0)[π(x), φ(y)]ET = T

(
∂2x0φ(x)φ(y)

)
− iδ(4)(x− y) ,

(6.140)
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Figure 30: Topologically distinct diagrams for 2 → 2 elastic scattering at the lowest perturbative
order in the φ3 theory, obtained connecting fields from two vertices and four external particles.
The number of times each topologically distinct configuration is also reported.

and so we find

(✷x +m2)D(x− y) = 〈0|T
(
(✷x +m2)φ(x)φ(y)

)
− iδ(4)(x− y)|0〉 = −iδ(4)(x− y) . (6.141)

Going over to momentum space we find immediately that D̃(q) = i/(q2 −m2), except near the
singularity at q2 = m2. This singularity must be dealt with by choosing some prescription when
integrating D̃(q) over momentum, and this must be done so that Eq. (6.139) is reproduced. The
correct prescription is

D̃(p) =
i

p2 −m2 + iǫ
. (6.142)

Indeed, the poles of this expression are at p0 = ±
√

~p 2 +m2 ∓ iǫ, and so using the residue
theorem we find

∫
d4p

(2π)4
e−ip·xD̃(p) =

∫
d4p

(2π)4
e−ip·x

i

p2 −m2 + iǫ

= i

∫
d4p

(2π)4
e−ip·x

1

p0 −
√

~p 2 +m2 + iǫ

1

p0 +
√

~p 2 +m2 − iǫ

= i

∫
d3p

(2π)4

{

θ(x0)(−2πi)e−ip·x
1

2p0
+ θ(−x0)(2πi)e−ip·x 1

−2p0

}

= i

∫
d3p

(2π)32p0
{
θ(x0)e−ip·x + θ(−x0)e−ip·x

}
= D(x) .

(6.143)
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Figure 31: Feynman diagrams for 2 → 2 elastic scattering at the lowest perturbative order in
the φ3 theory. The momenta associated to external and internal lines are also shown.

We then have for 2 → 2 elastic scattering in the φ3 theory

Mfi = iλ2
{

i

(p1 + p2)2 −m2
+

i

(p′1 − p1)2 −m2
+

i

(p′2 − p2)2 −m2

}

= −λ2
{

1

s−m2
+

1

t−m2
+

1

u−m2

}

,

(6.144)

which manifestly displays crossing symmetry.

6.10 Fermions

So far we have discussed only scalar fields, but all the matter particles (quarks and leptons) are
spin-12 fermions. This requires that we extend our formalism to include them.

Generalising Fock space is straightforward: it suffices to take into account that there is
now one more quantum number for free fermions, namely the spin in one of the three spatial
direction, which is usually taken to be the z direction. One-particle states therefore read

|~p , sz〉 (6.145)

with sz = ±1
2 . For multiparticle states one has to take into account the Fermi-Dirac statistics of

fermion states, i.e., a the state of a system of many identical fermions must change sign under
exchange of any two of them. We then have for multiparticle states

|~p1 , s1 z; ~p2 , s2 z; . . . ~pn , sn z; 〉 = (−1)σP |~pP(1) , sP(1) z; ~pP(2) , sP(2) z; . . . ~pP(n) , sP(n) z〉 (6.146)

where P is any permutations of {1, 2, . . . , n}, and σP is its signature, which equals 0 if the
permutation is obtained with an even number of transpositions (exchanges of two elements),
and 1 if the permutation is obtained with an odd number of transpositions. For example,

|~p1 , s1 z; ~p2 , s2 z〉 = −|~p2 , s2 z; ~p1 , s1 z〉 ,
|~p1 , s1 z; ~p2 , s2 z; ~p3 , s3 z〉 = −|~p2 , s2 z; ~p1 , s1 z; ~p3 , s3 z〉 = |~p2 , s2 z; ~p3 , s3 z; ~p1 , s1 z〉 .

(6.147)
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We can define creation and annihilation operators like in the scalar case, adding an extra index
for the spin of the particle that is created or destroyed. Due to the Fermi-Dirac statistics of the
staes, Eq. (6.146), however, the annihilation operators bs(~p ) and the creation operators bs(~p )

†,
s = ±1

2 , must obey anticommutation relations,

{bs(~p ), bt(~q )†} ≡ bs(~p )bt(~q )
† + bt(~q )

†bs(~p ) = δst(2π)
32p0δ(3)(~p− ~q ) ,

{bs(~p ), bt(~q )} = {bs(~p )†, bt(~q )†} = 0
(6.148)

These operators create particle states out of the vacuum state |0〉, which is annihilated by all
the bs(~p ),

bs(~p )|0〉 = 0 , ∀s , ∀~p . (6.149)

If different species of fermions are present, the corresponding creation and annihilation operators
are taken to anticommute; if fermions and bosons are present, their respective creation and
annihilation operators are taken to commute.

6.10.1 The Dirac equation

We now want to build quantum fields to describe the dynamics of these particles, following a
procedure similar to the one used for scalar particles: solve a relativistic wave equation and then
impose quantisation of the amplitudes of the normal modes, or equivalently imposing canonical
commutation relations (once we have identified the appropriate Lagrangian). The Klein-Gordon
equation is the trasposition into quantum-mechanical language of the energy-momentum relation
E2 = ~p 2+m2, and so has to be obeyed by the fermion field; on the other hand, there is nothing
in that equation that specifies the number of spin states of a fermion.

The appropriate equation for spin-12 fermions was found by Dirac, in an attempt to solve the
problems of the Klein-Gordon equation still within relativistic quantum mechanics. These prob-
lems, as mentioned above, where the existence of negative energy states, and the impossibility
to find a covariant probability current giving a positive-definite probability density.43 Negative-
energy states appear because the equation is second-order in time and so, Dirac reasoned, a way
to get rid of them would be to find a relativistic first-order equation for the fermions. Moreover,
this equation should imply the Klein-Gordon equation. Dirac’s idea was then to look for the
“square root” of the Klein-Gordon equation, i.e., for an equation of the form

bµ∂µψ = aψ , (6.152)

satisfied by the wave function ψ, which implies automatically

bµ∂µb
ν∂νψ = a2ψ =⇒ (−bµ∂µbν∂ν + a2)ψ = 0 , (6.153)

43From the Klein-Gordon equation and its complex conjugate one finds

0 = φ
∗(✷+m

2)φ− φ(✷+m
2)φ∗ = φ

∗
∂µ∂

µ
φ− φ∂µ∂

µ
φ
∗ = ∂µ[φ

∗
∂
µ
φ− (∂µ

φ
∗)φ] , (6.150)

and so the current

J
µ = iφ

∗
↔

∂
µ
φ (6.151)

is conserved. We note in passing that this is the Noether current associated to the U(1) symmetry of the Klein-
Gordon Lagrangian under φ → eiα and φ† → e−iα. This is therefore a good candidate for a probability current,
since it is a four-vector and it is conserved, but unfortunately its µ = 0 component is not positive-definite.
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and to impose that this reproduces the Klein-Gordon equation. This requirement is satisfied if

✷ = −bµbν∂µ∂ν = −1
2{bµ, bν}∂µ∂ν ,

m2 = a2 .
(6.154)

which will be satisfied if
{bµ, bν} = −2ηµν , a2 = m2 . (6.155)

These equations cannot be solved by means of complex constants: while the second equation is
easily solved by setting a = ±m, the first one in the case µ = ν would imply that (bµ)2 = −1
for all µ, which is incompatible with bµbν = 0 for µ 6= ν. The simplest way to solve Eq. (6.155)
is by means of 4× 4 matrices, bµ = iγµ, a = m14, with

γ0 =

(
12 02
02 −12

)

, γj =

(
02 σj
−σj 02

)

. (6.156)

One can verify explicitly that
{γµ, γν} = 2ηµν . (6.157)

The resulting equation,
(i/∂ −m)ψ = 0 , (6.158)

where /∂ ≡ γµ∂µ, is the Dirac equation. This equation solved the problem of the non-positive
probability density, but did not solve the problem of negative energies. In fact, from this equation
one can derive the Dirac Hamiltonian as follows,

i∂0ψ = (mγ0 − i~∇ · γ0~γ)ψ ≡ HDiracψ . (6.159)

Energy eigenfunctions are easily found in the form of plane waves, ψ = ψ0e
−ip·x, with ψ0

satisfying
γ0(m+ ~p · ~γ)ψ0 = p0ψ0 → (p0γ0 − ~p · ~γ −m)ψ0 = (/p−m)ψ0 = 0 . (6.160)

There are four solutions to Eq. (6.160), two with positive energy p0 =
√

~p 2 +m2 and two
with negative energy p0 = −

√

~p 2 +m2. It is customary to fix p0 ≡ +
√

~p 2 +m2 and look
for positive-energy E = p0 solutions with momentum ~p of the form ψ+ = u(~p )e−ip·x, and for
negative-energy solutions E = −p0 with momentum −~p of the form ψ− = v(~p )eip·x. Here u and
v denote four-component bispinors. One finds

(/p−m)u(~p ) = 0 , (/p+m)v(~p ) = 0 . (6.161)

Setting

u =

(
ξ1
ξ2

)

, v =

(
η1
η2

)

(6.162)

with two-component spinors ξ1,2 and η1,2, we find

0 = (/p−m)u =

(
(p0 −m)ξ1 − ~p · ~σξ2
−(p0 +m)ξ2 + ~p · ~σξ1

)

,

0 = (/p+m)v =

(
(p0 +m)η1 − ~p · ~ση2
−(p0 −m)η2 + ~p · ~ση1

)

.

(6.163)
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These are solved setting

ξ2 =
~p · ~σ
p0 +m

ξ1 , η1 =
~p · ~σ
p0 +m

η2 . (6.164)

Choosing pairs of orthonormal spinors χs and χ̃s, s = 1, 2, χ†
s′χs = χ̃†

s′χ̃s = δs′s, we can then
write

us(~p ) =
√

p0 +m

(

χs
~p·~σ
p0+m

χs

)

, vs(~p ) =
√

p0 +m

(
~p·~σ
p0+m

χ̃s
χ̃s

)

, (6.165)

where the factor
√

p0 +m is chosen for normalisation purposes, so that

ūs′(~p )us(~p ) = 2mδs′s , v̄s′(~p )vs(~p ) = −2mδs′s ,

ūs′(~p )vs(~p ) = 0 v̄s′(~p )us(~p ) = 0 ,
(6.166)

where
ūs(~p ) ≡ us(~p )

†γ0 , v̄s(~p ) ≡ vs(~p )
†γ0 . (6.167)

Completeness of the solutions entails the relations
∑

s

us(~p )ūs(~p ) = /p+m,
∑

s

vs(~p )v̄s(~p ) = /p−m. (6.168)

The double degeneracy of each energy level explains the two spin states of an electron. In fact,
taking the low-energy limit ~p→ 0 in the positive-energy solution we find

us(~p ) →
√
2m

(
χs
0

)

, (6.169)

so only two components survive, which can be interpreted as the two components of the electron
wave function. One usually takes

χ1 =

(
1
0

)

χ2 =

(
0
1

)

, (6.170)

so that the s = 1 solution corresponds to sz = 1
2 and the s = 2 solution corresponds to

sz = −1
2 . The need to interpret somehow the negative-energy solutions led to the prediction of

the positron, i.e., the antielectron: a negative-energy solution of momentum −~p for the electron
is reintepreted as a positive-energy solution of momentum ~p for the positron. In the low-energy
limit we find for the negative-energy solution

vs(~p ) →
√
2m

(
0
χ̃s

)

. (6.171)

Since the change of sign of the energy can be obtained by changing the direction of time,
consistency requires that we change both the spatial momenta and the spin of the particle, and
so we set44

χ̃1 =

(
0
1

)

χ̃2 = −
(
1
0

)

, (6.172)

so that the s = 1 solution corresponds to sz =
1
2 and the s = 2 solution corresponds to sz = −1

2
for the antielectron.

44Ignore the minus sign for the time being. If you cannot ignore it, the reason for it is similar to the reason
why a minus sign appeared when relating antiquarks and isospin states: this time the symmetry group we are
representing is the Lorentz group, and if we take the particle to transform according to a certain representation,
then the antiparticle must transform according to the complex conjugate of that representation.
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6.10.2 Quantisation of the Dirac field

We now want to preceed with the second quantisation of the Diurac wave function, promoting
it to a quantum fields. To do so, we write the most general solution of Eq. (6.158) as a linear
superposition of the positive-energy and negative-energy solutions, Eq. (6.165),

ψ(x) =

∫

dΩp
∑

s

{

us(~p )bs(~p )e
−ip·x + vs(~p )ds(~p )

†eip·x
}

, (6.173)

where for the time being bs(~p ) and ds(~p )
† denote ordinary complex numbers. Notice that ψ has

an index α = 1 ldots, 4, like us and vs do. This result could have been obtained directly by first
Fourier-transforming to momentum space the Dirac equation,

ψ(x) =

∫
d4p

(2π)4
e−ip·xψ̃(p) , (/p−m)ψ̃(p) = 0 . (6.174)

Multiplying the Dirac equation in momentum space by /p+m we find

0 = (/p+m)(/p−m)ψ̃(p) = (/p
2 −m2)ψ̃(p) = (p2 −m2)ψ̃(p) , (6.175)

so that
ψ̃(p) = 2πδ(p2 −m2)ψ̂(p0, ~p )

=
2π

2ε(~p )

{

δ(p0 − ε(~p ))ψ̂(ε(~p ), ~p ) + δ(p0 + ε(~p ))ψ̂(−ε(~p ), ~p )
}

=
2π

2ε(~p )

{
δ(p0 − ε(~p ))B(~p ) + δ(p0 + ε(~p ))D(−~p )

}
,

(6.176)

with
(/p−m)B(~p ) = 0 , (/p+m)D(~p ) = 0 , (6.177)

where it is understood that p0 = ε(~p ). These equations are solved by the expressions of
Eq. (6.165),

B(~p ) =
∑

s

us(~p )bs(~p ) , D(~p ) =
∑

s

vs(~p )ds(~p )
† , (6.178)

for arbitrary complex bs(~p ) and ds(~p )
†, and so

ψ(x) =

∫
d4p

(2π)4

∑

s

e−ip·x
2π

2ε(~p )

{

δ(p0 − ε(~p ))us(~p )bs(~p ) + δ(p0 + ε(~p ))vs(−~p )ds(−~p )†
}

=

∫
d3p

(2π)32p0

∑

s

{

us(~p )bs(~p )e
−ip·x + vs(~p )ds(~p )

†eip·x
}

,

(6.179)
i.e., Eq. (6.173). We now promote bs(~p ) and ds(~p )

† to operators by imposing the appropriate
anticommutation relations for the creation and annihilation operators of fermionic particles,

{bs(~p ), bt(~q )} = {bs(~p )†, bt(~q )†} = {ds(~p ), dt(~q )} = {ds(~p )†, dt(~q )†} = 0 ,

{bs(~p ), bt(~q )†} = {ds(~p ), dt(~q )†} = (2π)32p0δ(3)(~p− ~q ) .
(6.180)
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These imply the following equal-time anticommutation relations,

{ψα(x), ψβ(y)}ET = {ψα(x)†, ψ†
β(y)}ET = 0 ,

{ψα(x), ψ†
β(y)}ET =

∫

dΩp

∫

dΩq
∑

s,t

[

e−i(p·x−q·y)us α(~p )ut β(~q )
†{bs(~p ), bt(~q )†}ET

+ ei(p·x−q·y)vs α(~p )vt β(~q )
†{ds(~p )†, dt(~q )}ET

]

=

∫

dΩp
∑

s

[

e−ip·(x−y)us α(~p )us β(~p )
† + eip·(x−y)vs α(~p )vs β(~p )

†
]

=

∫

dΩp

[

ei~p·(~x−~y)(/p+m) + e−i~p·(~x−~y)(/p−m)
]

γ0

=

∫

dΩp p
0
[

ei~p·(~x−~y) + e−i~p·(~x−~y)
]

= δ(3)(~x− ~y) .

(6.181)

This shows us how to modify the canonical quantisation approach for the fermion fields. It is easy
to see that the Dirac equation can be obtained via a variational principle from the Lagrangian

L = ψ̄(i/∂ −m)ψ , (6.182)

where ψ̄ ≡ ψ†γ0. Indeed, performing variation with respect to ψ̄ we find

∂L

∂ψ̄
= (i/∂ −m)ψ = ∂µ

∂L

∂(∂µψ̄)
= 0 . (6.183)

Taking the derivative with respect to ∂0ψ we find the canonical momentum conjugate to ψ,

π =
∂L

∂(∂0ψ)
= iψ† . (6.184)

Imposing canonical anticommutation relations, we finally find

{ψα(x), ψβ(y)}ET = 0 , {πα(x), πβ(y)}ET = −{ψα(x)†, ψβ(y)†}ET = 0 ,

{ψα(x), πβ(y)}ET = {ψα(x), iψ†
β(y)}ET = iδ(3)(~x− ~y ) ,

(6.185)

from which the commutation relations for the creation and annihilation operators follows.45 We
can then obtain the Hamiltonian via the usual Legendre transform,

H =

∫

d3x
[
π(x)∂0ψ(x)− ψ̄(x)

(
i/∂ −m

)
ψ(x)

]

=

∫

d3x
[
iψ̄(x)γ0∂0ψ(x)− ψ̄(x)

(
i/∂ −m

)
ψ(x)

]

=

∫

d3x ψ̄(x)
(

−i~∇ · ~γ +m
)

ψ(x) .

(6.186)

45A couple of technical remarks. The Lagrangian in Eq. (6.182) is not Hermitian, but it differs from a Hermitian
quantity by a total divergence, which does not affect the equations of motion. The fields ψ and ψ̄ in this case
are not independent fields, like they were in the scalar case. This is shown for example by the vanishing of the
canonical momentum that would be associated to ψ†. Even using the Hermitian form of the Lagrangian, one finds
constraints between fields and canonical momenta. The appropriate way to deal with this requires the theory of
constrained Hamiltonians, which is way beyond the scope of these notes. Luckily enough, the sloppy approach
gives the correct results.
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Anticipating the appearance of singularities in the product of fields at the same spacetime point,
we define the normal-ordered product for fermion fields in analogy with the scalar case. One
writes down the expansion in creation and annihilation operators of the fields in the product,
and replaces each string of operators with the analogous string where all creation operators are
moved to the left and all annihilation operators are moved on the right, but multiplied by a
sign equal to the signature of the permutation: if an odd number of transposition was necessary,
then this will be minus, if it was even that this will be plus. This can be summarised in the
simple relations

: bs(~p)bt(~q)
† : = −bt(~q)†bs(~p) = − : bt(~q)

†bs(~p) : ,

: bs(~p)bt(~q) : = bs(~p)bt(~q) = −bt(~q)bs(~p) = − : bt(~q)bs(~p) : ,
(6.187)

which also tell us that now the order in which the operators appear will matter for the overall
sign of the normal-ordered product. Defining the positive-frequency and negative-frequency
parts of ψ and ψ̄,

ψ+(x) =

∫

dΩp
∑

s

us(~p )bs(~p )e
−ip·x , ψ−(x) =

∫

dΩp
∑

s

vs(~p )ds(~p )
†eip·x ,

ψ̄+(x) =

∫

dΩp
∑

s

v̄s(~p )ds(~p )e
−ip·x , ψ̄−(x) =

∫

dΩp
∑

s

ūs(~p )bs(~p )
†eip·x ,

(6.188)

we then have for the product of two fields ψ1,2 = ψ, ψ̄

: ψ1(x)ψ2(y) : = ψ1+(x)ψ2+(y)− ψ2−(y)ψ1+(x) + ψ1−(x)ψ2+(y) + ψ1−(x)ψ2−(y)

= −ψ2+(y)ψ1+(x)− ψ2−(y)ψ1+(x) + ψ1−(x)ψ2+(y)− ψ2−(y)ψ1−(x)

= − : ψ2(y)ψ1(x) : .

(6.189)

Minus signs like the one appearing here are ubiquitous when dealing with fermions. We can also
work out the simplest case of Wick’s theorem for fermions. In general,

ψ1(x)ψ2(y) =: ψ1(x)ψ2(y) : +{ψ1+(x), ψ2−(y)} , (6.190)

with the anticommutator being a c-number and thus equal to its vacuum expectation value. The
only case in which this is nonzero is when one of the fields is ψ and the other is ψ̄, while in all
other cases the ordinary product and the normal-ordered product are equal. In the nontrivial
case

ψ(x)ψ̄(y) =: ψ(x)ψ̄(y) : +{ψ+(x), ψ̄−(y)}
=: ψ(x)ψ̄(y) : +〈0|{ψ+(x), ψ̄−(y)}|0〉
=: ψ(x)ψ̄(y) : +〈0|ψ+(x)ψ̄−(y)|0〉
=: ψ(x)ψ̄(y) : +〈0|ψ(x)ψ̄(y)|0〉 .

(6.191)

If we define the time-ordered product of two fermion fields as follows,

T (ψ1(x)ψ2(y)) = θ(x0 − y0)ψ1(x)ψ2(y)− θ(y0 − x0)ψ2(y)ψ1(x) = −T (ψ2(y)ψ1(x)) , (6.192)

we then conclude

T
(
ψ(x)ψ̄(y)

)
=: ψ(x)ψ̄(y) : +〈0|T

(
ψ(x)ψ̄(y)

)
|0〉 ≡: ψ(x)ψ̄(y) : +S(x− y) . (6.193)
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The contraction, or propagator, S(x − y) is now a 4 × 4 matrix, S = Sαβ . Dependence on the
difference x − y only follows from the translation-invariance of the theory. The generalisation
to n fields is like for scalar fields, with a time-ordered prduct being decomposed in a sum of
normal-ordered products and contractions, with the difference that now one must multiply each
term by the parity of the permutation required to bring the fields in the order in which they
appear. For example,

T
(
ψα(x)ψ̄β(y)ψγ(w)ψ̄δ(z)

)
= : ψα(x)ψ̄β(y)ψγ(w)ψ̄δ(z) : +Sαβ(x− y) : ψγ(w)ψ̄δ(z) :

− Sαδ(x− z) : ψγ(w)ψ̄β(y) : + : ψα(x)ψ̄β(y) : Sγδ(w − z)

+ Sαβ(x− y)Sγδ(w − z)− Sαδ(x− z)Sγβ(w − y) .

(6.194)

6.10.3 Interacting theories with fermions

Interacting theories are built in analogy with the scalar case: one adds an interaction term
LI to the free Dirac Langrangian, solves the euler-Lagrange equations of motion and imposes
canonical commutation relations on bosonic fields and anticommutation relations on fermionic
fields. This is usually an impossible task, and one resorts to perturbation theory. Fields in
the interaction picture are defined like in the bosonic case, and the S-matrix elements can
be computed perturbatively making use of Wick’s theorem. We consider here an example to
illustrate the procedure.

Consider an interaction term LI = g : φψ̄ψ :, where φ is a Hermitian scalar field. This type
of interaction is known as Yukawa interaction. Going over to the interaction picture and looking
at the elastic scattering of two fermions, we have to lowest perturbative order

〈f |S − 1|i〉 = (ig)2

2

∫

d4x

∫

d4y〈f |T
(
: φ(x)ψ̄(x)ψ(x) :: φ(y)ψ̄(y)ψ(y) :

)
|i〉 , (6.195)

where
|i〉 = |~p1 s1 z; ~p2 s2 z〉 , |f〉 = |~p ′

1 s
′
1 z; ~p

′
2 s

′
2 z〉 . (6.196)

Using Wick’s theorem for the bosonic fields, we get

〈f |S − 1|i〉 = (ig)2

2

∫

d4x

∫

d4y D(x− y)〈f |T
(
: ψ̄(x)ψ(x) :: ψ̄(y)ψ(y) :

)
|i〉 , (6.197)

and since we have as many particles as fermionic fields, only the no-contraction term in the
Wick expansion for fermions will contribute,

〈f |S − 1|i〉 = (ig)2

2

∫

d4x

∫

d4y D(x− y)〈f | : ψ̄(x)ψ(x)ψ̄(y)ψ(y) : |i〉 . (6.198)

The annihilation operator required to deal with particles in the initial state appears in ψ, while
the creation operator required to deal with particles in the final state appears in ψ̄, and so
(understanding the sum over repeated Greek indices)

〈f | : ψ̄α(x)ψα(x)ψ̄β(y)ψβ(y) : |i〉 = 〈f | : ψ̄α(x)ψ̄β(y)ψβ(y)ψα(x) : |i〉
= 〈f | : ψ̄α(x)ψ̄β(y) : |0〉〈0| : ψβ(y)ψα(x) : |i〉

=
(

〈~p ′
1 s

′
1 z|ψ̄α(x)|0〉〈~p ′

2 s
′
2 z|ψ̄β(y)|0〉 − 〈~p ′

2 s
′
2 z|ψ̄α(x)|0〉〈~p ′

1 s
′
1 z|ψ̄β(y)|0〉

)

×
(

〈0|ψα(x)|~p1 s1 z〉〈0|ψβ(y)|~p2 s2 z〉 − 〈0|ψα(x)|~p2 s2 z〉〈0|ψβ(y)|~p1 s1 z〉
)

.

(6.199)
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The minus signs appear due to the anticommuting nature of the creation/annhilation operators.
Indeed, one has

bt(~q )bs(~p )|~p1 s1 z; ~p2 s2 z〉 = bt(~q )bs(~p )bs1 z(~p1 )
†|~p2 s2 z〉

= bt(~q )
[

δss1 z(2π)
32p01δ

(3)(~p− ~p1)− bs1 z(~p1 )
†bs(~p )

]

|~p2 s2 z〉

= δss1 z(2π)
32p01δ

(3)(~p− ~p1)δts2 z(2π)
32p02δ

(3)(~p− ~p2)|0〉
− bt(~q )bs1 z(~p1 )

†bs(~p )bs2 z(~p2 )
†|0〉

= δss1 z(2π)
32p01δ

(3)(~p− ~p1)δts2 z(2π)
32p02δ

(3)(~p− ~p2)|0〉
− bt(~q )bs1 z(~p1 )

†δss2 z(2π)
32p02δ

(3)(~p− ~p2)|0〉
= δss1 z(2π)

32p01δ
(3)(~p− ~p1)δts2 z(2π)

32p02δ
(3)(~p− ~p2)|0〉

− δts2 z(2π)
32p01δ

(3)(~p− ~p1)δss2 z(2π)
32p02δ

(3)(~p− ~p2)|0〉 .

(6.200)

The one-particle matrix elements are easy to compute, and read

〈0|ψ(x)|~p sz〉 =
∫

dΩq
∑

s

e−iq·xus(~q )〈0|bs(~q )bsz(~p )†|0〉

=

∫

dΩq
∑

s

e−iq·xus(~q )〈0|{bs(~q ), bsz(~p )†}|0〉

=

∫

dΩq
∑

s

e−iq·xus(~q )δssz(2π)
32q0δ(3)(~p− ~q ) = e−ip·xusz(~p ) ,

〈~p sz|ψ̄(x)|0〉 =
∫

dΩq
∑

s

eiq·xūs(~q )〈0|bsz(~p )†bs(~q )|0〉

=

∫

dΩq
∑

s

eiq·xūs(~q )〈0|{bsz(~p )†, bs(~q )}|0〉

=

∫

dΩq
∑

s

eiq·xūs(~q )δssz(2π)
32q0δ(3)(~p− ~q ) = eip·xūsz(~p ) .

(6.201)

Since we are integrating over x and y, they are equivalent and therefore

〈f |S − 1|i〉 = (ig)2

2

∫

d4x

∫

d4y D(x− y)

× 2
(

〈~p ′
1 s

′
1 z|ψ̄α(x)|0〉〈~p ′

2 s
′
2 z|ψ̄β(y)|0〉〈0|ψα(x)|~p1 s1 z〉〈0|ψβ(y)|~p2 s2 z〉

− 〈~p ′
2 s

′
2 z|ψ̄α(x)|0〉〈~p ′

1 s
′
1 z|ψ̄β(y)|0〉〈0|ψα(x)|~p1 s1 z〉〈0|ψβ(y)|~p2 s2 z〉

)

= (ig)2
∫

d4x

∫

d4y D(x− y)

×
(

ei(p
′
1−p1)·xei(p

′
2−p2)·yūs′1 z

(~p ′
1 )us1 z(~p1 )ūs′2 z

(~p ′
2 )us2 z(~p2 )

− ei(p
′
2−p1)·xei(p

′
1−p2)·yūs′2 z

(~p ′
2 )us1 z(~p1 )ūs′1 z

(~p ′
1 )us2 z(~p2 )

)

.

(6.202)
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Integrating over the position of the vertices we finally obtain

〈f |S − 1|i〉 = i(2π)4δ(4)(p′1 + p′2 − p1 − p2)

× ig2
(

D̃(p′1 − p1)ūs′1 z
(~p ′

1 )us1 z(~p1 )ūs′2 z
(~p ′

2 )us2 z(~p2 )

− D̃(p′2 − p1)ūs′2 z
(~p ′

2 )us1 z(~p1 )ūs′1 z
(~p ′

1 )us2 z(~p2 )
)

,

(6.203)

and thus

Mfi = −g2
[

1

t−m2
ūs′1 z

(~p ′
1 )us1 z(~p1 )ūs′2 z

(~p ′
2 )us2 z(~p2 )

− 1

u−m2
ūs′2 z

(~p ′
2 )us1 z(~p1 )ūs′1 z

(~p ′
1 )us2 z(~p2 )

]

.

(6.204)

The relative minus sign between the two terms reflects the fermionic nature of the colliding
particles.

Like in the bosonic case, the calculation of S-matrix element can be sped up by means
of diagrammatic techniques. The procedure is the same outlined above in Section 6.9, which
must be supplemented by rules to deal with fermion fields. An important difference is that for
the Dirac fields the lines representing the fields that appear in an interaction vertex must be
oriented. The convention is to have ψ represented by an arrow entering the vertex, and ψ̄ by an
arrow exiting the vertex. Correspondingly, once that a field is associated with an incoming or
outgoing particle, one will have

• a line entering the diagram for each particle in the initial state;

• a line exiting the diagram for each particle in the final state;

• a line exiting the diagram for each antiparticle in the initial state;

• a line entering the diagram for each antiparticle in the final state.

The different rules for the antiparticles come from the fact that they are annihilated by ψ̄ in
the initial state and by ψ the final state. When making the contraction between two fermion
fields, an internal line appears directed from the vertex where we picked ψ̄ towards the vertex
where we picked ψ. Both when associating fields with incoming/outgoing particles and when
contracting two fields, minus signs should multiply the various contribution reflecting the number
of transpositions of fermion fields required by the application of Wick’s theorem, and by the
application of annihilation/creation fields to remove particles from the initial/final state. Of
course, the factors associated with the colliding particles are different for fermions, but the
same phase factors appear as in the bosonic case, so that integrating over the positions of the
vertices, thus going over to momentum space, one finds momentum-conserving delta-functions
at each vertex (momenta are assigned to fermionic external lines as in the bosonic case, and to
fermionic internal lines according to the direction of their arrow). In momentum space the rules
for external lines are thus to include

• us(~p ) for a particle in the initial state;

• ūs(~p ) for a particle in the final state;

• v̄s(~p ) for an antiparticle in the initial state;
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Figure 32: Lowest-order Feynman diagrams for 2 → 2 scattering in the Yukawa theory.

• vs(~p ) for an antiparticle in the final state.

The values of ~p and s are chosen according to the state of the colliding particle. To internal
lines one associates the Fourier transform S̃(q) of the fermion propagator. The indices of the
bispinors and of the propagators are contracted following the direction opposite to that indicated
by the arrows: one starts from the end of an uninterrupted fermion line, corresponding to a final
fermion or an initial antifermion, and writes down ūs α1(~p ) or v̄s α1(~p ), then keeps placing on
the right the fermion propagators S̃αiαi+1(q) with q the momentum flowing in the internal line
(in the same direction of the arrow), until another initial or final particle is reached, and one
closes the line with us αN

(~p ) or vs αN
(~p ) according to whether that is an initial fermion or a final

antifermion. With these rules it is straightforward to obtain Eq. (6.204): the two topologically
inequivalent Feynman diagrams are shown in Fig. (32). Correspondingly, one writes down a
factor (ig)2 for the two vertices, follows the arrows to write the bispinor factors, and multiplies
by a scalar propagator. Since the two fermions in the final state are exchanged to go from the
first to the second diagram, a relative minus sign appears. Counting is easy: there are two
equivalent vertices, which give a factor 2 canceling the 1/2 due to these diagrams being O(g2),
but no extra degeneracies.

For completeness, we now derive the explicit form of the fermion propagator. From its
definition, and making use of the decomposition in creation and annihilation operators, we find

Sαβ(x− y) = 〈0|T
(
ψα(x)ψ̄β(y)

)
|0〉

=

∫

dΩp

∫

dΩq
∑

s,t

θ(x0 − y0)e−i(p·x−q·y)us α(~p )ūt β(~q )〈0|bs(~p )bt(~q )†|0〉

− θ(y0 − x0)e−i(p·y−q·x)vt α(~q )v̄s β(~p )〈0|ds(~p )dt(~q )†|0〉

=

∫

dΩp
∑

s

θ(x0 − y0)e−ip·(x−y)us α(~p )ūs β(~p )

− θ(y0 − x0)e−ip·(y−x)vs α(~p )v̄s β(~p ) .

(6.205)
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Using now the sum rules for the bispinors, Eq.(6.168), we get

Sαβ(x− y) =

∫

dΩp

[

θ(x0 − y0)e−ip·(x−y)(/p+m)αβ − θ(y0 − x0)e−ip·(y−x)(/p−m)αβ

]

.

(6.206)
The momentum-space expression is obtained more easily if we first notice that the fermion
propagator obeys the following diferential equation,

(i/∂
x −m)S(x− y) = (i/∂

x −m)〈0|T
(
ψ(x)ψ̄(y)

)
|0〉

= 〈0|T
(

(i~γ · ~∇x −m)ψ(x)ψ̄(y)
)

|0〉+ ∂x0 〈0|T
(
iγ0ψ(x)ψ̄(y)

)
|0〉

= 〈0|T
(
(i/∂

x −m)ψ(x)ψ̄(y)
)
|0〉+ iδ(x0 − y0)〈0|{γ0ψ(x), ψ̄(y)}ET|0〉 .

(6.207)
But ψ obeys the Dirac equation, and from the canonical anticommutation relations we have

γ0αβ{ψβ(x), ψ̄δ(y)}ET = γ0αβ{ψβ(x), ψ†
γ(y)}ETγ0γδ = δαδδ

(3)(~x− ~y ) , (6.208)

and so we conclude that
(i/∂

x −m)S(x− y) = iδ(4)(x− y) . (6.209)

After setting

S(x) =

∫
d4q

(2π)4
e−iq·xS̃(q) , (6.210)

we obtain the coresponding equation in momentum space,

(/q −m)S̃(q) = i . (6.211)

Inverting the matrix (/q −m) is not possible when it is singular, and since

(/q +m)(/q −m) = q2 −m2 , (6.212)

this is so when q2 = m2. Away from that point, (/q−m)−1 = (/q+m)/(q2−m2). The singularity
should be dealt with in such a way as to reproduce Eq. (6.206), and we already know that the
correct combination of theta functions and plane-wave phases is obtained with

S̃(q) = i
/q +m

q2 −m2 + iǫ
. (6.213)

(Be aware that here q0 6=
√

~q 2 +m2, but is a free integration variable). Indeed, use the residue
theorem we find

S(x) = i

∫
d4q

(2π)4
e−iq·x

/q +m

q2 −m2 + iǫ

= i

∫
d4q

(2π)4

{

θ(x0)
(−2πi)

2q0
e−i(q

0x0+~q·~x)(q0γ0 − ~q · ~γ +m)

+ θ(−x0) 2πi

(−2q0)
e−i(−q

0x0+~q·~x)(−q0γ0 − ~q · ~γ +m)

}

q0=
√
~q 2+m2

=

∫

dΩq

{

θ(x0)e−iq·x(/q +m)− θ(−x0)eiq·x(/q −m)

}

,

(6.214)

in agreement with Eq. (6.206).
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A Relativistic kinematics

The appropriate setting for relativistic theories is Minkowski space, in which time and space are
put together in a four-dimensional entity. A point, or event, in Minkowski space is identified by
four coordinates, and is denoted as Xµ with µ = 0, 1, 2, 3, with X0 the temporal coordinate and
the Xj , j = 1, 2, 3 the spatial coordinates. In formulas,

Xµ = (ct, ~x) = (t, ~x) , (A.1)

having set the spedd of light c = 1. Usually, Greek indices run over 0, . . . , 4 and Latin indeces
over 1, . . . , 3.

Putting time and space together does not, by itself, add much to our understanding of
Nature. What does, then? Let us consider first three-dimensional Euclidean space. Points in
this space are identified by three coordinates as ~x, but what makes this space the Euclidean
space and not just R

3 is how we measure distances, i.e., the choice of a metric. In Euclidean
space distances are defined as

d(~x, ~y) = (~x− ~y )2 = (~x− ~y )i(~x− ~y )jδij , (A.2)

and are clearly left invariant by translations ~x→ ~x+~a and rotations ~x→ R~x. Here we adopt the
convention that a sum over repeated indices is understood, unless explicitly stated otherwise.

In Minkowski space, distances are replaced with the so-called interval,

∆s2 ≡ (X−Y )2 ≡ (X−Y )µ(X−Y )νgµν ≡ (X−Y )µ(X−Y )µ = (X0−Y 0)2−( ~X− ~Y )2 , (A.3)

where gµν is the Minkowski metric tensor,

gµν = diag(1.− 1− 1− 1) . (A.4)

In Eq. (A.3) we have defined the covariant vector Xµ = Xνgνµ, which differs from the con-
travariant vector Xµ in the sign of the spatial components,

Xµ = (X0, ~X) , Xµ = (X0,− ~X) . (A.5)

In general, indices are lowered by gµν , and raised by gµν defined by the relation gµρgρν = δµν ,
which in the case at hand is gµν = gµν . For future utility, we introduce the scalar product

X · Y ≡ XµY νgµν = XµYµ = X0Y 0 − ~X · ~Y , (A.6)

where ~X · ~Y denotes the usual three-dimensional Euclidean scalar product. The interval is not
really a distance, because it is not a positive-definite quantity. For ∆s2 > 0, we speak of a
timelike interval; for ∆s2 < 0, we speak of a spacelike interval; for ∆s2 = 0, we speak of a
lightlike or null interval. In general, for X2 > 0 we speak of a timelike vector, for X2 < 0 we
speak of a spacelike vector, and for X2 = 0 we speak of a timelike or null vector.

Points Y lightlike-separated from X and such that Y 0 −X0 > 0 form the forward or future
lightcone of X, while those with Y 0 − X0 < 0 form the backward (past) lightcone. Points Y
timelike-separated from X and such that Y 0 − X0 > 0 are inside the forward lightcone and
constitute the future of event X; similarly, points Y timelike-separated from X and such that
Y 0 − X0 < 0 are inside the backward lightcone and constitute the past of event X. Set for
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simplicity X = 0, and consider the future of this event. An important fact is that given X1 and
X2 inside the forward light cone, their sum X1 + X2 will still be inside the forward lightcone.
The proof is simple: first of all, notice that

(X1 +X2)
2 = (X1)

2 + (X2)
2 + 2X1 ·X2(X1)

2 + (X2)
2 + 2(X0

1X
0
2 − ~X1 · ~X2)

> 2(X0
1X

0
2 − ~X1 · ~X2) ≥ 2(X0

1X
0
2 − | ~X1|| ~X2|) ,

(A.7)

where we made use of the Schwartz inequality. Next, since X1,2 are inside the forward lightcone,

(X)21,2 > 0 and X0
1,2 > 0, so X0

1,2 > | ~X1,2|, and therefore X0
1X

0
2 − | ~X1|| ~X2| ≥ 0.

(X1 +X2)
2 > 2(X0

1X
0
2 −X0

1X
0
2 ) ≥ 0 , (A.8)

i.e., (X1 +X2)
2 > 0, and obviously X0

1 +X0
2 > 0.

A.1 Lorentz transformations

In three-dimensional Euclidean space, the distance between points is invariant under rotations.
The analogue in four-dimensional Minkowski space is the invariance of the interval under Lorentz
transformations. These are precisely defined as the linear transformations X ′ = ΛX that leave
the interval invariant:

(X ′ − Y ′)2 = (X − Y )2 ⇒ X ′ 2 + Y ′ 2 − 2X ′ · Y ′ = X2 + Y 2 − 2X · Y ⇒ X ′ · Y ′ = X · Y . (A.9)

In components, X ′µ = ΛµαXα,

gαβX
αY β = gµνX

′µY ′ν = gµνΛ
µ
αΛ

ν
βX

αY β , (A.10)

and since this must hold for all X and Y ,

gαβ = gµνΛ
µ
αΛ

ν
β . (A.11)

Using the matrix notation Λµα = Λµα, gµν = gµν , Eq. (A.11) is recast as

g = ΛTgΛ . (A.12)

From this it follow immediately that (detΛ)2 = 1, i.e., detΛ = ±1, so that Λ is invertible.
Transformations with detΛ = 1 are called proper. Since clearly g−1 = g is invertible,

Λ−1 = g−1ΛTg . (A.13)

It is easy to see thatΛ−1 is still a Lorentz transformation. Let us see how this reads in component
notation. From the definition of gµν , we see that gµν = g−1

µν . Then

Λ−1
αβ = gαµΛνµgνβ = Λ α

β . (A.14)

Consider now the α = 0, β = 0 component of Eq. (A.11). We have

1 = Λ0
0Λ

0
0 − Λi0Λ

i
0 , (A.15)

where sum over i = 1, 2, 3 is understood. Since Λi0Λ
i
0 ≥ 0, we find (Λ0

0)
2 ≥ 1, and so either

Λ0
0 ≥ 1 or Λ0

0 ≤ −1. Transformations with Λ0
0 ≥ 1 are called orthocronous. A proper
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orthocronous Lorentz transformation does not change the direction of time or the orientation of
space. In fact, consider a vector X inside the forward lightcone, and X ′ = ΛX. Notice first of
all that from Eq. (A.11) one finds

gαβ = gµνΛ α
µ Λ β

ν . (A.16)

Using this relation for the inverse transformation Λ−1,

gαβ = gµνΛ α
µ Λ β

ν , (A.17)

a relation analogous to Eq. (A.15) follows,

1 = Λ0
0Λ

0
0 − Λi iΛ

i
i . (A.18)

We now have for X ′0

X ′0 = Λ0
0X

0 + Λ0
iX

i . (A.19)

The second term is the three-dimensional scalar product ~Λ · ~X ≡ Λ0
iX

i, so bounded from below

by −|~Λ|| ~X|. But | ~X| < X0, and from Eq. (A.18) |~Λ| < Λ0
0, so that

X ′0 > Λ0
0X

0 − Λ0
0X

0 = 0 . (A.20)

The proper orthocronous Lorentz transformations consists of three-dimensional rotations and
boosts. they can be obtained from the rotations and the boosts in, say, the x direction,

Λµν =







γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1







(A.21)

where β = v
c = v (we work in natural units where c = 1), and γ = 1/

√

1− β2. All the other
Lorentz transformations are obtained from the proper orthocronous one by means of a parity
transformation P or a time reversal T ,

Pµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






, Tµν =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






. (A.22)

A.2 Point particles

Consider a point particle (with positive mass m > 0), travelling in space. Its trajectory is
described by the four-vector

Xµ(t) = (ct, ~x(t)) = (t, ~x(t)) , (A.23)

where ~x(t) is the point in space where the particle is at time X0 = t, and we have set c = 1.
Over an infinitesimal amount of time dt, Xµ changes by dXµ,

dXµ(t) = (dt, d~x(t)) = dt(1, d~xdt (t)) = dt(1, ~v(t)) , (A.24)
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where ~v is the particle velocity. The infinitesimal interval (dX)2 is

(dX)2 = dXµdXµ = dt2(1− ~v 2) > 0 (A.25)

since ~v 2 < 1, i.e., the speed is bounded by the speed of light (c = 1). To see this, notice that in
the rest frame of the particle, the spacetime trajectory reads trivially

Xµ
R = (τ,~0 , ) (A.26)

where the time τ measured in the particle’s rest frame is called proper time. We are taking time
to flow in the same direction in the two frames, i.e., they are connected by an orthocronous
Lorentz transformation. Since the interval is a relativistic invariant, we have

(dXR)
2 = dτ2 = (dX)2 = dt2(1− ~v 2) . (A.27)

This shows that ~v 2 must be smaller than 1, since dτ2 is positive. Setting γ = 1
1−~v 2 , we find that

dτ2 =
dt2

γ2
. (A.28)

Since γ ≥ 1, we get the well-known time-dilation effect, i.e., |dt| > |dτ | in a frame where the
particle is moving. At each instant of time, going over to the instantaneous rest frame of the
particle, we can determine the amount of proper time that has elapsed for the particle between
two times t0 and t in the lab frame, where the particle moves with time-dependent speed ~v 2:

τ =

∫

dτ =

∫ t

t0

dt′
√

1− ~v 2(t′) . (A.29)

This is the origin of the twins’ paradox.
Under orthocronous Lorentz transformations, τ is an invariant, while Xµ, and smiilarly

its differential dXµ, transform like four-vectors, i.e. Xµ → ΛµνXν . It then follows that the
derivatives of Xµ with respect to proper time transform again like four-vectors, i.e., in the same
way as Xµ does. We then define the four-velocity

uµ ≡ dXµ

dτ
= ( dtdτ ,

d~x
dτ ) = (γ, γ d~xdt ) = (γ, γ~v) = (γ, γ~β) , (A.30)

where ~β = ~v/c = ~v (in natural units). The four-momentum pµ of the particle is obtained
by multiplying the four-velocity by its mass, which is also an invariant, so that pµ is again a
four-vector,

pµ ≡ muµ = (γm, γm~β) . (A.31)

Component-wise,

p0 = mγ =
m√

1− ~v 2
= E ,

pi = mγ~β i =
m~v i√
1− ~v 2

= ~p i ,
(A.32)

where we have identified p0 with the energy E and the spatial components with those of the
spatial momentum ~p. Let us check that these identifications are correct, in the sense that
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they reduce to the usual quantities in the non-relativistic limit. To do this, we reinstate the
explicit dependence on c and take the limit c → ∞, i.e., the limit of |~v|/c ≪ 1. We have that
uµ = (cγ, cγ~β) (check the dimensions!), and so

p0 = mc
1

√

1−
(
~v
c

)2
= mc

(

1 +
1

2

(
~v

c

)2
)

,

~p i = mc
~v

c

1
√

1−
(
~v
c

)2
= m~v +O((v/c)2) .

(A.33)

The second line is, to leading order, the familiar expression for the spatial moemntum of a
particle. Multiplying the first line by c, we obtain

p0c = mc2 +
1

2
~v2 , (A.34)

which is the familiar expression for the kinetic energy of a particle, plus the rest energy E0 = mc2.
With all the units of c in their place, then,

pµ = m
dXµ

dτ
= (Ec , ~p ) . (A.35)

As we have already remarked above, pµ is a four-vector, so p2 = pµpµ is invariant, and it is
nothing but the squared mass of the particle:

p2 = m2γ2(1− ~β 2) = m2 . (A.36)

The four-velocity square is simply

u2 = γ2(1− ~β 2) = 1 . (A.37)

Both are timelike vectors; since u0 ≥ 1. both uµ and pµ are inside the forwards lightcone.
Parameterising the trajectory in terms of proper time, this means in particular that the tangent
to the trajectory at X(τ) has to be within the forwards lightcone at X(τ); integrating over τ ,
the trajectory at times after τ has to lie within the forward lightcone at X(τ). Finally, from
p2 = m2 one obtains the dispersion relation between energy and spatial momentum,

E2 = ~p 2 +m2 . (A.38)

We conclude this subsection with a brief discussion of massless particles. These are particles for
which the four-momentum pµ = (ω,~k) satisfies p2 = 0, i.e.,

ω2 − ~k 2 = 0 ⇒ ω = |~k| ≥ 0 . (A.39)

The trajectory of these particles lies always on the lightcone.

A.3 Two-particle scattering

Consider a scattering process with two particles, a and b, in the initial state, and two particle,
c and d (possibly equal to a and b), in the final state,

a b→ c d . (A.40)

Let us discuss the kinematics of the final state both in the lab frame, in which particle b is at
rest, and in the center of mass frame, in which the toal spatial momentum vanishes.
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Lab frame In the lab frame the four-momenta of a and b read

pa = (EL, ~pL) , pb = (mb, 0) . (A.41)

From now on we drop the coordinate index from the four-vectors. For the particles in the final
state we have in general

pc = (Ec, ~pc) , pd = (Ed, ~pd) . (A.42)

We define the angle θL as the angle between the trajectory of c and that of a, from the equation

cos θL =
~pL · ~pc
|~pL||~pc|

. (A.43)

CM frame The CM frame is by definition the frame in which the total spatial moemntum
vanishes. Therefore, the four-momenta of the various particles read

pa = (E∗
a, ~p

∗) , pb = (E∗
b ,−~p ∗) ,

pc = (E∗
c , ~p

′∗) , pd = (E∗
d ,−~p ′∗) .

(A.44)

Also in this case we define the angle θ∗ as the one formed by the trajectories of a and c,

cos θ∗ =
~p ∗ · ~p ′∗

|~p ∗||~p ′∗| . (A.45)

We also denote the total center of mass energy as

√
s = E∗

a + E∗
b = E∗

c + E∗
d . (A.46)

We show now, using four-momentum conservation, that the energy and the magnitude of the
momenta of c and d are determined uniquely in the CM, and are independent of θ∗. The values
of the energies, magnitude of the momenta, and θL in the lab can then be obtained by means
of a Lorentz transformation, and depend on the angle θ∗ in the CM.

The proof reduces entirely to finding a relation between s and the individual energies of the
particles. The simplest way to achieve this is to proceed as follows:

pa + pb = pc + pd

pb = pc + pd − pa

p2b = (pc + pd)
2 + p2a − 2pa · (pc + pd)

m2
b = s+m2

a − 2E∗
a

√
s

E∗
a =

s+m2
a −m2

b

2
√
s

.

(A.47)

Notice that since s is a relativistic invariant, through this relation we can determine E∗
a from

knowledge of EL in the lab:

s = (pa + pb)
2 = m2

a +m2
b + 2pa · pb = m2

a +m2
b + 2ELmb . (A.48)

On the other hand, a derivation entirely analogous to that in Eq. (A.47) with a and b exchanged
allows to derive E∗

b ,

E∗
b =

s+m2
b −m2

a

2
√
s

, (A.49)

140



and more importantly exchanging a with c and b with d we obtain the energies of the final
products,

E∗
c =

s+m2
c −m2

d

2
√
s

, E∗
d =

s+m2
d −m2

c

2
√
s

. (A.50)

From the dispertion relation we can then derive the magnitude of the momenta:

|~p ∗|2 = E∗2
a −m2

a =
(s+m2

a −m2
b)

2 − 4sm2
a

4s
=
s2 + (m2

a −m2
b)

2 − 2s(m2
a +m2

b)

4s

=
(s+m2

a +m2
b)

2 − 4m2
am

2
b

4s
,

|~p ′∗|2 = E∗2
c −m2

c =
(s+m2

c −m2
d)

2 − 4sm2
c

4s
=
s2 + (m2

c −m2
d)

2 − 2s(m2
c +m2

d)

4s

=
(s+m2

c +m2
d)

2 − 4m2
cm

2
d

4s
.

(A.51)

For completeness we briefly discuss how to recover the kinematics in the lab from that in the
CM. First of all, by definition of CM, we have that

0 = γCM(|~plab| − βCMElab) , (A.52)

where ~plab and Elab are the total spatial momentum ant total energy in the lab, and so that
velocity of the CM in the lab is

βCM =
|~pL|

EL +mb
. (A.53)

Writing the inverse Lorentz transformation from the CM to the lab we then find

Ec,lab = γCM(E∗
c + βCM|~p ′∗| cos θ∗) ,

|~pc,lab| cos θL = γCM(|~p ′∗| cos θ∗ + βCME
∗
c ) ,

|~pc,lab| sin θL = |~p ′∗| sin θ∗ ,
(A.54)

where we have made use of the fact that the transverse directions are left unaffected by a Lorentz
transformation. From this and the previous relations we can obtain the kinematics of particles
in the lab (the azimuthal angle transforms trivially, as it involves only transverse directions).

Example Consider a proton-antiproton (pp̄) collision in a collider, with Ep = Ep̄ = 270 GeV.
Clearly,

√
s = 540 GeV. Suppose now to perform an experiment with p at rest in the lab. What

energy should the p̄ have in the lab in order to obtain the same s? Since s is a relativistic
invariant, we can evaluate it in the reference frame we prefer. In the lab

s = (pp + pp̄)
2 = 2(m2

p + ELmp) (A.55)

where EL is the energy of the p̄ in the lab. Solving for EL and imposing
√
s = 540 GeV,

EL =
s− 2m2

p

2mp
≃ s

2mp
≃ (540)2

2
GeV ≃ 30

2
· 104 GeV = 150 TeV , (A.56)

which is a huge energy. In general, the lab energy scales like EL ≃ E2
CM/mp.
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A.4 Mandelstam variables

A convenient set of variables to describe the kinematics of 2 → 2 scattering process are the
so-called Mandelstam variables,

s ≡ (pa + pb)
2 = (pc + pd)

2 ,

t ≡ (pa − pc)
2 = (pb − pd)

2 ,

u ≡ (pa − pd)
2 = (pb − pc)

2 .

(A.57)

The main advantage of these variables is that they are Lorentz-invariant by construction. We
have already seen that s is the total center of mass energy squared. The variable t is instead
the square of the four-momentum transfer from a to c, and reads explicitly

t = p2a + p2c − 2pa · pc = m2
a +m2

c − 2(E∗
aE

∗
c − |~p ∗||~p ′∗| cos θ∗) . (A.58)

Since energies and magnitudes of momenta are entirely determined by s and by the particle
masses, we can write t = t(s, θ∗), or we can trade the variables s and θ∗ used in the previous
subsection with s and t, reading off cos θ∗ from Eq. (A.58). The expression for u is obtained
replacing pc with pd, which amounts to mc → md and cos θ∗ → − cos θ∗. It is then clear that
only two of the three Mandelstam variables can be independent. In fact, one can show that

s+ t+ u = (pa + pb)
2 + (pa − pc)

2 + (pa − pd)
2

= m2
a +m2

b +m2
c +m2

d + 2pa · (pa + pb − pc − pd) = m2
a +m2

b +m2
c +m2

d .
(A.59)

The Mandelstam variables satisfy various bounds that determine the physical region in which
s, t, u can take values for a physical process. It is easy to see that

s ≥ max((ma +mb)
2, (mc +md)

2) , (A.60)

while bounds on t and u are in general more complicated to derive. There is however a big

simplification if ma = mb and mc = md, in which case E∗
a = E∗

b = E∗
c = E∗

d =
√
s
2 , and so

t = m2
a +m2

c −
s

2

(

1− cos θ∗
√

1− 4m2
a

s

√

1− 4m2
c

s

)

. (A.61)

Moreover, if one also has ma = mc ≡ m, then

t = 2m2 − s

2

(

1− cos θ∗
(

1− 4m2

s

))

= −
(
s− 4m2

)
sin2

θ∗

2
, (A.62)

which, since s ≥ 4m2, shows that

−
(
s− 4m2

)
≤ t ≤ 0 . (A.63)

The upper limit is attained at threshold s = 4m2 or when θ∗ = 0, i.e., forward scattering, while
the lower limit is attained for θ∗ = π, i.e., for backscattering. This result is useful in the case of
elastic processes involving only one type of particles and/or antiparticles, but also in the limit
of very high energy in which we can neglect the mass in the dispersion relation and treat all
particles as massless. Since in this case one simply has that u(s, θ∗) = t(s, π − θ∗), the same
bound applies to u; the situation at θ∗ = 0 and θ∗ = π is of course the opposite that one finds
for t.
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Example Consider elastic pp scattering at
√
s = 53 GeV. The differential cross section dσ

dt (t)
has a peak at −t = t0 = 1.34 GeV2. What is the corresponding scattering angle in the CM?

For the elastic scattering of identical particles, −t = (s − 4m2
p) sin

2 θ∗

2 ≃ s sin2 θ
∗

2 , since
s/m2

p ≫ 1. We have

sin2
θ∗

2
= − t

s− 4m2
p

=
1.34

532 − 4 ∗ 0.9382 =
1.34

2805
= 4.78 · 10−4 . (A.64)

To leading order, sin2 θ
∗

2 ≃ (θ∗)2

4 , and

θ∗ ≃ 2
√
5 · 10−2 ≃ 4 · 10−2 . (A.65)

A.5 Invariant phase space

The possible states of a spinless particle of mass m are characterised by the four-momenta pµ

that satisfy p2 = m2 with positive energy, p0 ≥ m > 0. The corresponding domain in R
4,

Φ = {p ∈ R
4|p2 −m2 = 0 , p0 > 0} , (A.66)

is called the phase space of the particle. The infinitesimal element of phase space has measure

dΦ = d4pδ(p2 −m2)θ(p0)C , (A.67)

where C is an arbitrary constant, usually set to C = (2π)−3. What matters here is that
dΦ is invariant under orthocronous Lorentz transformations.46 In fact, p2 is invariant under
generic Lonretz transformations, while the sign of hte temporal component is invariant under
the orthocronous ones.

The element of invariant one-particle phase space dΦ can be recast in a more convenient
form if we make use of the general formula

δ(f(x)) =
∑

xn,f(xn)=0

1

|f ′(xn)|
δ(x− xn) , (A.68)

valid for f with simple zeros. To prove that this formula is correct, we multiply both sides by
some function h(x) and integrate over the real line, and show that the two sides give the same
result. First, divide the real line (−∞,+∞) into intervals Ik in which f(x) is monotonic, and in
each of them change variables to y = f(x). Since f is monotonic in Ik it can be locally inverted,
so that x = f−1(y) there. We get

∫ +∞

−∞
dx δ(f(x))h(x) =

∑

k

∫

Ik

dx δ(f(x))h(x) =
∑

k

∫

f(Ik)
dy

1

|f ′(f−1(y))|δ(y)h(f
−1(y)) .

(A.69)
Since f is monotonic in each Ik and has simple zeros, it can at most vanish once there with
nonzero |f ′|. Then only those intervals will contribute to Eq. (A.69) that contain a zero xn, and

∫ +∞

−∞
dx δ(f(x))h(x) =

∑

k

∫

f(Ik)
dy

1

|f ′(f−1(0))|δ(y)h(f
−1(0)) =

∑

n

1

|f ′(xn)|
h(xn) . (A.70)

46Since Φ is a noncompact domain, the integral of dΦ will diverge anyway.
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This is precisely what one obtains straightforwardly by repeating the procedure with the right-
hand side.

Using the result above, we find

dΦ = d4pδ(p2 −m2)θ(p0)C = Cd4pδ(p0 2 − ~p 2 −m2)

= Cd4p
1

2|p0|
[
δ(p0 − ε(~p )) + δ(p0 + ε(~p ))

]
θ(p0) = Cd4p

1

2ε(~p )
δ(p0 − ε(~p ))θ(p0) ,

(A.71)

where
ε(~p ) ≡

√

~p 2 +m2 . (A.72)

The n-particle phase space is the phase space of n particles subjected to a constraint on the
total four-momentum:

dΦ(n) =
n∏

j=1

dΦjδ
(4)



ptot −
n∑

j=1

pj



 . (A.73)

Let us work out explicitly the two-particle phase space element, which up to a constant reads

dΦ(2) ∝ d3p1
2ε1(~p1 )

d3p2
2ε2(~p2 )

δ(4)(ptot − p1 − p2)

=
d3p1

2ε1(~p1 )

d3p2
2ε2(~p2 )

δ(3)(~ptot − ~p1 − ~p2)δ(Etot − ε1(~p1 )− ε2(~p2 )) ,

(A.74)

where εi(~p ) =
√

~p 2 +m2
i . We can trivially integrate over ~p2, setting it equal to ~p2 = ~ptot − ~p1,

obtaining

dΦ(2) ∝ d3p1
2ε1(~p1 )

1

2ε2(~ptot − ~p1 )
δ(Etot − ε1(~p1 )− ε2(~ptot − ~p1 )) . (A.75)

We can further integrate over |~p1|, so eliminating the last delta function, if we replace this by
a delta function in |~p1|, which requires the introduction of the appropriate Jacobian factor, as
discussed above. This is most easily done using center of mass variables, for which ~ptot,CM = 0,
and so ~p1CM = −~p2CM. Let p = |~p1CM| = |~p2CM|. The argument of the delta function reads
(with a little abuse of notation)

Etot − ε1(p)− ε2(p) , (A.76)

and
∣
∣
∣
∂

∂p
[Etot − ε1(p)− ε2(p)]

∣
∣
∣ =

[
p

ε1(p)
+

p

ε2(p)

]

. (A.77)

Using this in Eq. (A.75), changing variables to d3p1 = dpp2dΩCM = dpp2d cos θCMdφCM, and
integrating over p we find

dΦ(2) ∝ dpp2dΩ

2ε1(p)

1

2ε2(p)

[
p

ε1(p)
+

p

ε2(p)

]−1

δ(p− pCM)

= dΩCM
pCM

4(ε1(pCM) + ε2(pCM))
= dΩCM

pCM

4ECM,tot
= dΩCM

pCM

4
√
s
.

(A.78)
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