Atomic and molecular physics

first written exam retake

December 11, 2019

- 1. (25 pts) For 1s hydrogen-like orbital ($\Psi_{100}=\sqrt{\frac{Z^3}{\pi}}e^{-Zr}$) calculate r_{max} where the radial probability function $(4\pi r^2\Psi^2)$ has a maximum and also calculate $\langle r \rangle$ expectation value.
- 2. (30 pts) The electron configuration of oxygen atom is $1s^22s^22p^4$. For this configuration, determine all the possible atomic terms and order them by increasing energy.
- 3. (45 pts) We used $H_D = G_0 m + \sum\limits_{i=1}^3 G_i p_i + qV$ as the Dirac Hamiltonian for an electron in a spherically symmetric potential V(r). G-s can be expressed by the following Kronecker products: $G_0 = \sigma_3 \otimes I, G_i = \sigma_1 \otimes \sigma_i$, where I is the 2×2 unit matrix and σ -s are the Pauli-matrices. Prove that the $[H_D, (r \times p)_z + \frac{\hbar}{2}\sigma_z]$ commutator is zero.