miliadfansk veskeið, etalabulisku miliadfansk veskeið, etalabulisku helpmalati pl. niteris, oldidie m miliadelis at jatnið poran marophað ar atomale herendit is nerepet jatnið herpiedð réletter morpiae i saknale (menn idej tantra, a tökerelis): medanismus atomal nikking A talv biberjiedð réletter morpiae i saknale (menn in veskner ja pl. B ar A-tau (nog At at 1858) in veskner ja pl. B ar A-tau (nog At at A-tau sop At talv teisforat konertaisis (Ca) = $\frac{1}{12}$ teisforat konertaisis (Ca) = $\frac{1}{12}$ teisforat konertaisis (Ca) = $\frac{1}{12}$	DIFFUZIO DIFFUZIO
---	----------------------

Példich : S 5 P Fich I tore: ad(2) = ? [e y du ad 12) = 0 - lim ed(2) = 1 Sdim: ti te Felter Boton 15 Jere Je Je Je Bar 200 JCB - JX (DB JCB) F $(x_1t) = c_0 + (c_0 - c_0) \left[1 - e_1 + \left(\frac{x}{2 + b_R t} \right) \right]$ OCB - DE ACB Shol 1 A.Z This Minta "helpe": (x) 2P (x) mz = 1 (z(x,t) dx : B otomole XC Not in felt teles: GR (×,0) 8-40. film solution weboundted mo (B= CS he x=0; Oct La (B= Co, ha t=0; 0 4× co CB 2/TLDB+ OXP(-4DB+ -MB 27478-27678-04× 400 p fether a c-til! DX = 0 manna XZ

(No. ellevénése:
1.)
$$C_{g}(0, t) = C_{g}$$
 to the following product of $(0) = 0$
2.) $C_{g}(x \rightarrow \infty, t) = C_{g}$ much line $erf(t_{g}) = 1$)
Lingger:
1.) Wern at x_{i} have $2iR_{g}^{2}$ mulations
may have a kohe. C_{g} -tiel eltavoladate. In viteos
middlena is jé = fecti mo., amig $d \gg 2iR_{g}^{2}$?
2.) $\frac{C_{g}-C_{g}}{C_{g}-C_{g}} = 1 - erf(\frac{x}{2iR_{g}^{2}}) \rightarrow C_{g} = rig_{2} - 2\frac{x}{2iR_{g}^{2}}$
 $Pl : \frac{C_{g}-C_{g}}{C_{g}-C_{g}} = \frac{1}{2} - erf(\frac{x}{2iR_{g}^{2}}) \rightarrow C_{g} = rig_{2} - 2\frac{x}{2iR_{g}^{2}}$
 $Pl : \frac{C_{g}-C_{g}}{C_{g}-C_{g}} = \frac{1}{2} - 2 \times 2 1.04 \sqrt{D_{g}}t$
 $A = x_{h}$ behablioni milogi n-nereciselles
 n^{2} - neres idore von miloség.
2.) Ket eltéré koncenthécióji feltér:
This film mo-2 meterporiciója
 $\frac{1}{2(1+erf_{2V(D_{g})}) - e(x_{g})}{\frac{2}{2(10p)}} = \frac{1}{2} + \frac{1}{$

Fig. 8.1. (a) Initial distribution of solute and (b) distribution after diffusion time t, represented as the sum of thin film solutions for films of thickness $\Delta \alpha$. After [8.1].

1) Homogenizidize
t= 0: (g (x) = Co + Cm cos Tix (1=21 hul-
länhomni bonc. fluthdiscist)
Ha Dg fotlen (g täl è, x-täl:
(g (x,t) = Co + Cm cop (-Ti²Dgt) co Tix
(g (x,t) = Co + Cm cop (-Ti²Dgt) co Tix
(g (x,t) = Co + Cm cop (-Ti²Dgt) co Tix
(g = Co ~ e^{-t}/2, alol
$$x = \frac{l^2}{l}$$

Dg növelsded x völken = Thoke
A diffuzió atomi mechanizmusai
Az eddigiel hontinum leinisban: folgaddžban
gårban ugamiker ösnefügsérel. Ott: ütböréselvil
belövetkerð indry chlorotásotat kell nómkaveni.
Szilándban: rás helysől az nomnédosa.
leipanizmustól függellevil:
X atomik B konc.-ja (térlopat): (g N, Vg
I : citlagos upnóri frekvencia body
B atomik C : silon - i n₂ < g 2 dom

I silier at upnost vigre atomat nime:
$$U_{1} = n_{1} \Gamma \delta T$$

A lehetselpes cellhelget nama = koond. nam; biblisse 6.
Nor minder 6. for at u_{1} -bit a 2 silver upnami.
 $V_{12} = \left(\frac{1}{6}, u_{1}\right) = \frac{1}{2}, u_{1}$
 $V_{12} = \left(\frac{1}{6}, u_{2}\right) = \frac{1}{2}, u_{2}$
 $V_{12} = \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}$

Mient eredmennen a bonc. pradiens difficient? Nem inamyitija a difficient, eredő ánam isale orient, ment tölde B atom van az epyile sileon minta mónikon. A feiti anolicis megleholősen áltoláros, otugrás mechanismusás na nem tetting fel semmit. Nem bölömber D austrá

Mashapp:
I dim. Brown-morges dividedited:
m véleten lépés, mindegyile & hornisápil, x tegés
menten.
B rénecske átlagosan; elmondulás 2-es átlaga:

$$\overline{X_m^2} = \sqrt{2} m$$
; (m >> 1.)
Ö ssehasoulitua a thin film mo-nál kapott konc.don
lés 2-es átlag nélességével:
 $C_{g}(x) = \frac{m_{p}}{2\pi i D_{g}t} exp(-\frac{x^2}{4D_{g}t})$
 $\overline{X_{g}^2} = \frac{\int C_{g}(x) x^2 dx}{\int C_{g}(x) dx} = 2.D_{g}t$

$$\alpha^{2} m = 2 D_{B} t$$

$$m = \Gamma t \int D_{B} = \frac{1}{2} \chi^{2} \Gamma'$$

3 dim. véletlen bohyongésnál az $\overline{r^2}$ - hez járulikot adó ugrásoknar csar 1/3-a ad jámilikot $\overline{X^2}$ - hez \overline{r} $D_{B} = \frac{1}{6} \alpha^2 \overline{\Gamma}$

Undifficie : "		Visienleter : ?	TS adam.	00	Uprin: fredere
ménés: ménés: trocar trocar uobancianol tisteno uobancianol tisteno hateség: hister kelymene;	$D = D_{o} exp = \Delta H_{m} - T\Delta$ $D = D_{o} exp = \Delta S_{m} exp (-$	D=D_ exp(- AGm); and	6	00	a was 10-5/K will
ilichert (T-t)	AHM LT)	o nomensos	5 LGm	00	resonacity,

$$\begin{split} & \prod_{n=1}^{\infty} = \int_{V} V_{V} v_{n} \text{ uppose systemized trademised regiments of the source.} \\ & \text{Atom termines registered for V_{V} (a Delipht V_{V} (b) $V_{V} = V_{O} \exp\left(-\frac{\Delta G_{V} v_{N}}{kT}\right) = V_{O} \exp\left(-\frac{\Delta S_{V} v_{N}}{k}\right) \\ & \text{Atom termines alticles } \rightarrow \Delta G_{V} w_{N} \\ & V_{V} = V_{O} \exp\left(-\frac{\Delta G_{V} v_{N}}{kT}\right) = V_{O} \exp\left(-\frac{\Delta H_{V} v_{N}}{k}\right) \\ & \text{Atom V} = V_{O} \exp\left(-\frac{\Delta G_{V} v_{N}}{kT}\right) = V_{O} \exp\left(-\frac{\Delta H_{V} v_{N}}{kT}\right) \\ & \text{Atom V} = V_{O} \exp\left(-\frac{\Delta G_{V} v_{N}}{kT}\right) = \int_{V} \exp\left(-\frac{\Delta H_{V} v_{N}}{kT}\right) \\ & \text{Apple then it may as upper joint helpedde.} \\ & \text{Apple theorem models assertioned registered a complete delipht (a a advant eliphon a upper point helpedde.} \\ & \text{Apple Lettered models assertioned the set of (a a advant eliphon a upper point helpedde.} \\ & \text{Apple Lettered models as upper (-\frac{\Delta H_{V} v_{N}}{kT}) = C_{S} \exp\left(-\frac{\Delta H_{V} v_{N}}{kT}\right) \\ & \text{Apple Deliphon Q upper point helpedde.} \\ & \text{Apple Deliphon Q upper point helpe$$$

difficiend : Interst. $D_o = \frac{\chi^2 v_o}{6} \exp\left(AS_m/k\right)$ 1D~102 $\Delta S_m \approx 2 \div 3 k$

(T/T) függvengebon abrandera parturamon egyenesez. AHVD - Konst . Tm AHUD=16.5Lm du ho / stom

- "16.5 atom olvadt "allapotba kenik az át-ugnásnál" nem igaz!
- Pl.: (u : AHvo≈2eV/da Tm = 1350 K ; xFe - ban: Atyplev

Do:

) (c) DR a ket (holoonoren oldhato) komponennez. 0.5 R C az u.n. holowios diffición egyetthatige a hombinate hoting hatanona meg. -t griefikasan a houdden (Interdiffusion coefficient) epyeller epicthote, a DA is DB epicthotes 2= XX $\tilde{D}(c) = -\frac{1}{2} \left| \frac{d\eta}{dc} \right|_{0} \left(\eta dc \right)$ $\tilde{\mathbb{O}}(c) = -\frac{1}{c}$ XHO is repetted to nel minute: 2t dc coxdc a ax He meginancidos no silust: Matano-sik xde = 0 × 1 = 1 parez thick : =× to Bu Ez hatonoma

Handli equalities as A bompohenome.

$$C_{i} = \frac{N_{i}}{V_{i}} = \frac{1}{2} \frac{1}{$$

Mire joint 1.) Mérjuik v-t és D-t, kinomithatjuk DA és DB -ot.

PL: (u-22) at % Zh $\frac{\overline{D}_{Zh}}{\overline{D}_{Cu}} = 2.3$

(u - 22 at % 2u = 7) $\overline{D}_{cu} = 7$

 $\widetilde{D}_{2h} \left(\mathcal{V}_{2h} = 22\% \right) = 17$ $\widetilde{D}_{2h} \left(\mathcal{V}_{2h} \rightarrow 0 \right)$

Enosen frigg at someteteltol, de Dzu mindig naggobb, mint Du. 2.) Da 7 Da sole rendmenne iponoltale. Ha egymeri helyiser leine, DA= Drs adodna. Enős bizomyitéz V-mechanizmusna. is inda the da > da, boun ego creds V- inom amely az eredő ag.-inammel dleutetes 0 = 16+ 216 + AB V keltin is eltinisi folgametor in ner pet jotnanar. (Nem teljesen egrant az Nu= CA+CB=all) $\tilde{D} = v_B \tilde{D}_A + v_A \tilde{D}_B$ miat 3.) pl. VB=0 - 2 D=DB. "L.: Homopenicidas lepligasat a De hatanona meg.

rarshilale jelunletelen funid demonte V; direl in reh in befolger diale difficient.

figure 2-14. Values of the self-diffusion coefficient obtained for silver using si crystal and polycrystal samples. (After D. Turnbull, in "Atom Movements," p. American Society for Metals, Metals Park, Ohio, 1951.)

Figure 5.4 Equal-concentration profile of surface, grain boundary, and bulk diffusion in the same solid.

GB menten as notor elonesiet, inner diffundil a memoriale belage fele, x inongham.

Fig. 8.16. Schematic concentration profile for di surface (y = 0) preferentially along a grain bound (y-direction) of thickness δ .

Matinfillictich

$$c = c_{0} + z \in (y_{0}, y_{0})$$

 $D_{1}^{*} \rightarrow G_{2}^{*}$
 $D_{2}^{*} \rightarrow G_{2}^{*}$
 $D_{1}^{*} \rightarrow Lattice (mic.)$

[wolne, bull

A GB egg demeken $\frac{\partial c}{\partial t} = -\frac{\partial du}{\partial y} - \frac{2}{\delta} dx = \frac{\partial du}{\partial t} = -\frac{\partial du}{\partial y} - \frac{2}{\delta} dx = \frac{\partial du}{\partial x} = \frac{\partial du}{\partial y^2} + \frac{2}{\delta} \frac{\partial du}{\partial x} = \frac{\partial du}{\partial x} = \frac{\partial du}{\partial x} = \frac{\partial du}{\partial y^2} + \frac{\partial du}{\partial x} = \frac{\partial du}$

$$C(x,y,t) = c_0 \exp\left(\frac{-y}{(TTD_{t}+t)'^{4}} (\delta D_{c}^{*}/2D_{t}^{*})'^{4}\right)$$

$$\left[1 - \exp\left(\frac{x}{2\sqrt{D_{t}^{*}+t}}\right)\right]$$

$$\frac{\operatorname{Kinch}(\operatorname{kil}_{4} : \left\{ \operatorname{Kil}(\operatorname{Kil}_{4} \mid q, h, dq \operatorname{Kapajpi}_{4} \right\}$$

$$\operatorname{Rel}(\operatorname{Kil}_{4} : \operatorname{Kil}(\operatorname{Kil}_{4} \mid q, h, dq \operatorname{Kapajpi}_{4} : f(q, h) = \int_{T} ((\chi_{1}q_{1}, h) dx)$$

$$\operatorname{Kil}_{T} ((q, h) = \int_{T} ((\chi_{1}q_{1}, h) dx)$$

$$\operatorname{Kil}_{T} (q_{1}, h) = \int_{T} ((\chi_{1}q_{1}, h) = \int_{T} ((\chi_{1}q_{1}, h) dx)$$

$$\operatorname{Kil}_{T} (q_{1}, h) = \int_{T} ((\chi_{1}q_$$

- 4 equeries incredelenciga: In C (D1++)1/2 T1 1/4 1/4 $2 = \frac{D_{c}^{2} \delta}{2 D_{c}^{*} (D_{c}^{*} L)^{2}}$ GB - diff alder lingeres; ha 2221 annah ellenire, hogy (Dit) 2 >> 8. GB -ban leis atomok hangaden Χ : $XD_{C} > D_{L}$ brienticio fugies in l'empiges lehet. 200 μm 150 penetration depth 100 50 0 () 10 20 30 40 50" 60 70' 80 90 orientation difference 0 Fig. 8.18. Penetration depth of a Ni isotope in boundaries of nickel bicrystals with different orientation difference θ (7.8 h at 1100 °C). After [8.6].

A2 akt. en különberg: QG; QL AHVE ZAHVE (V-GB V-diml. hiti L'engepesello: AHUM & AHUM