GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján

Mérést végezte:

Seres Attila, 2019.okt.25.

Mérés célja:

A mérés célja a Snellius-Descartes törvény igazolása, mely szerint a fénysugár különböző optikai sűrűségű felületek határán az alábbi képlet szerint megtörik: $\frac{\sin \alpha}{\sin \beta} =$

 $\frac{n_2}{n_1} = n_{2,1}$. A mérés során a fénysugár ismert útjából számítottuk ki a törésmutatókat,

illetve a határszöget (azt az α szöget, melyhez tartozó β éppen 90°.) <u>Méréshez felhasznált eszközök:</u>

Elforgatható, szögmérős optikai pad, mágneses lézer, félkör alakú műanyag lencse <u>Mérés menete</u>

Az optikai padra helyezett műanyag lencsét megvilágítjuk a lézerrel, majd a pad meghatározott szögekben való elforgatásakor leolvassuk a kilépő fénysugár eltérési szögét is.

Mért és számított adatok, ill grafikonok levegő→műanyag esetében:

Beesési	Törési			-	
szög [°]	szög [°]	sinα	sinβ	n 2,1	
0	0	0,1736	0,1219	1,4249	
10	7	0,3420	0,2334	1,4651	
20	13,5	0,5000	0,3420	1,4619	
30	20	0,6428	0,4305	1,4931	
40	25,5	0,7660	0,5150	1,4874	
50	31	0,8660	0,5807	1,4913	
60	35,5	0,9397	0,6293	1,4932	
70	39	0,9848	0,6626	1,4862	
80	41,5	n _{2,1} =1,4919			

<u>és műanyag→levegő esetben</u>

Reesési	Törési										
szög [°]	szög [°]	sinα	sinβ	n 1,2	0,7						
0	0	0,1736	0,2588	0,6709	0,6					•	
10	15	0,2588	0,3987	0,6491	0,5					•	
15	23,5	0,3420	0,5075	0,6739	0,4				•		
20	30,5	0,4226	0,6293	0,6715	0.2			•			
25	39	0,5000	0,7431	0,6728	0,3			•			
30	48	0,5736	0,8526	0,6727	0,2		•				
35	58,5	0,6428	0,9563	0,6722	0,1						
40	73		0.070	`							
		n 1,2	e=0,6723	3	0,0	.0 ().2	0.4	0.6	0.8	

<u>Hibalehetőségek</u>

Leolvasási hiba a Hartl-korongról:0,5° (Legkisebb osztásköz 1°)

<u>Kiértékelés</u>

A beesési szögek szinuszait a törési szögek szinuszainak függvényében ábrázolva megkapjuk azt az egyenest, melynek meredeksége megadja a törésmutatókat. A számítások helyességét ellenőrizendő összeszorozzuk a két, melyek mivel egymás reciprokai kell, hogy legyenek, közel 1-et adnak ki. $n_{2,1}\cdot n_{1,2}=1,4919\cdot 0,6723=1,00302$ A határszöget pedig egyszerűen a levegő műanyagra vett törésmutatójának az arcus-szinuszából számítom, mert a fenti képletben szereplő törési szög szinusza 90°esetén 1. Tehát arcsin0,6723=42,24° ami alig tért el a mért 42°-os értéktől.

Közeghatáron történő visszaverődés vizsgálata 60°-os prizmával

<u>Mérés célja:</u>

A korábban (a levegő műanyagra vonatkoztatott törésmutatója segítségével) kiszámított határszög felhasználásával igazolom a Snellius-Descartes törvény visszaverődésre vonatkozó részét.

<u>Mérési eszközök</u>

Optikai pad, Hartli-korong, 60°-os prizma, soksugaras fényforrás Mérés menete:

A Hartl-korongra fektetett prizma egyik oldalára merőlegesen rábocsájtjuk a fénysugarakat, majd elforgatjuk annyira, hogy már ne lépjenek ki belőle a másik oldalon. Ekkor a szögmérő által mutatott szögérték elméleti összefüggésben áll a határszöggel, tehát a törvény a méréseinkkel ellenőrizhető. <u>Mért érték:</u> 3°

<u>Kiértékelés</u>:

Az ábrán látható módon haladó fénysugárnak ismert a visszaverődéshez tartozó beesési szöge (határszöge). Ebből az ismert geometriai összefüggések segítségével vissza lehet számolni egészen az első beesési szögig, ami nem más, mint 30°- φ ahol φ az elforgatás szöge. A műanyag lépési pontnál tehát: $n_{2,1} = \frac{\sin \alpha}{\sin \beta} = \frac{\sin 30^\circ - \varphi}{18^\circ} \varphi$ =30°-arcsin(n_{2,1}·sin18°)=2,44°, ami közelítőleg egyezik is az általam mért 3°-al.

GEOMETRIAI OPTIKA II. Gyűjtőlencse fókusztávolsága

Mérés célja:

Gyűjtőlencse fókuszának meghatározása a leképezési törvénnyel $(\frac{1}{r} = \frac{1}{k} + \frac{1}{r})$.

Mérési eszközök:

1 m-es skálázott optikai pad sínnel, a tárgyat kivetítő fényforrás, gyűjtőlencse, ernyő Mérés menete:

A fényforrást a tárggyal, ill. az ernyőt először a sín két végére helyezzük, majd 10cm-ként csökkentjük köztük a távolságot. Eközben minden egyes alkalommal megkeressük azt a 2 pontot a tárgy és az ernyő közt a lencse számára, ami éles képet eredményez.

Mért és számított adatok, ill. a grafikon:

d [cm]	k1 [cm]	t1 [cm]	k2 [cm]	t2 [cm]
100	12,0	88,0	88,0	12,0
90	12,3	77,7	77,7	12,3
80	12,5	67,5	67,4	12,6
70	12,8	57,8	57,1	12,9
60	13,8	46,2	46,1	13,8
50	15,1	34,9	34,6	15,4

1/k ₁	1/t 1	1/k ₂	1/t ₂	N 1	N ₂
0,0833	0,0114	0,0114	0,0833	0,1364	7,3333
0,0813	0,0129	0,0129	0,0813	0,1583	6,3171
0,0800	0,0148	0,0148	0,0794	0,1852	5,3492
0,0781	0,0173	0,0175	0,0775	0,2215	4,4264
0,0725	0,0216	0,0217	0,0725	0,2987	3,3406
0,0662	0,0287	0,0289	0,0649	0,4327	2,2468

A kiszámolt $\frac{1}{k_1}$ és $\frac{1}{t_1}$ értékeket

<u>Kiértékelés:</u>

ábrázolva mind az x, mind az y tengelymetszetek $\frac{1}{f}$ -t fogják megadni. Az így kapott ytengelymetszet 0,0947 melyből reciprok- vonással *f=10,56cm*, és az x-tengelymetszet 0,0943 és *f=10,61cm* <u>Hibalehetőségek</u>: kép élességének megítélése szubjektív, sín skálájának

0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0,000,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

legkisebb osztásköze: 1mm (a hiba: 0,5mm)

Szórólencse fókusztávolságának vizsgálata

<u>Mérés célja:</u> a szórólencse által képzett virtuális kép helyének megállapítása <u>Mérési eszközök:</u>

0,10

0,09

1m-es skálázott optikai pad, a tárgyat kivetítő fényforrás, gyűjtő-, szórólencse, ernyő

Mérés menete:

A fényforrás által a tárgyról vetített képet a szórólencsére irányozzuk, majd egy gyűjtőlencsén át egy ernyőre irányozzuk. Ez lehetővé teszi, hogy a szórólencse által képzett virtuális kép helyzetére következtessünk, mert az így a gyűjtőlencse által az ernyőre kivetített képnek mintegy tárgyául szolgál (ld. az alábbi ábrát).

Miután az ernyőt ebben az összeállításban a domború lencse fókusztávolságának megfelelően éles képet adó helyre pozícionáltuk, elvesszük a homorú lencsét, de az ernyőt és a másik lencsét a helyén hagyjuk. Ekkor, az előbbi beállítás mellet, azon a helyen, ahova téve a lámpa és a tárgy éles képet ad, kellett lennie az előbb a szórólencse által adott virtuális képnek. Ekkor a virtuális képtávolságot a szórólencse helyéből a virtuális kép (vagyis a fényforrás új) helyét kivonva meghatározhatjuk:

Mért és számított adatok:	[cm]
Szórólencse helye:	30,0
Fényforrás/tárgy helye:	10,0
Gyűjtőlencse helye:	60,0
Ernyő helye:	98,2
Fényforrás új helye:	21,0
Virtuális képtávolság:	9,0

FIZIKAI OPTIKA Fényelhajlás vizsgálata résen keresztül:

Mérés célja:

Igazolni, hogy a monokromatikus fény réseken áthaladva a hullámtermészetéből fakadó interferenciája által elhajlik. Ehhez az $a = \frac{n \cdot \lambda \cdot D}{y}$ összefüggést használjuk fel, ahol *a* a réstávolság (számított értéke), *n* az elhajlási rendek száma, λ az alkalmazott fény hullámhossza és *y* az n-edik elhajlási minimum és a középpont közti táv. Mivel a fény hullámhossza és a rés nagysága, mint a kísérleti segédeszközeink gyári paraméterei ismertek, a D ernyőtávolság mint L, a vizsgált elhajlási rendekhez (n=1 és 2) tartozó y₁ és. y₂ értékek kétszeresei pedig mint m₁ és m₂ mért adatokként mind rendelkezésünkre állnak, az elméleti háttér ill. méréseink helyessége ellenőrizhető.

Mérési eszközök:

Optikai pad, monokromatikus lézer, réseket tartalmazó lemez, ernyő, vonalzó Megadott illetve mért adatok:

r [mm]	m₁ [cm]	<mark>∆m₁ [cm]</mark>	m₂ [cm]	∆m₂ [cm]	Ernyőtávolság és hullámhossz	
0,04	4,2	0,05	8,2	0,05	D [cm]	110
0,08	1,9	0,05	3,8	0,05	ΔD [cm]	0,05
0,16	0,9	0,05	1,8	0,05	λ [nm]	670

Hibalehetőségek:

Mind a vonalzó, mind az optikai pad skálájának legkisebb egysége a milliméter volt, tehát a leolvasási hiba 0,05 cm. Egyéb, emberi hibatényezők: diffrakciós minimumhely közepének rossz megállapítása, kép élességének szubjektív mivolta.

<u>Hibaterjedés</u>: résméret bizonytalansága a mért értékek hibájából: $\Delta a_i = \frac{\Delta m_i}{m_i} + \frac{\Delta D}{D}$

Számított adatok és hibaterjedés:

r [mm]	n	m [cm]	y[cm]	a[mm]	Δm _i /m _i	ΔD/D	Δa _i
0.04	1	4,2	2,1	0,0351	0,01190	4,545·10 ⁻⁴	0,01236
0,04	2	8,2	4,2	0,0351	0,00610	4,545·10 ⁻⁴	0,00655
0,08	1	1,9	0,95	0,0776	0,02632	4,545·10 ⁻⁴	0,02677
	2	3,8	1,9	0,0776	0,01316	4,545·10 ⁻⁴	0,01361
0,16	1	0,9	0,45	0,1637	0,05556	4,545·10 ⁻⁴	0,05601
	2	1,8	0,9	0,1637	0,02778	4,545·10 ⁻⁴	0,02823

Kiértékelés, diszkusszió

Összegzésképpen elmondható, hogy bár a résméretre vonatkozó, mérésekből számított értékeim meglehetősen pontatlanok, és a bizonytalanság mértéke a résméret növekedtével együtt emelkedő tendenciát mutat. Ennek oka, hogy a diffrakció mértéke és ezáltal a kioltási minimumok közti táv a résmérettel fordítottan arányos. Mindazonáltal egy nagyságrendbe esnek és azon belül is rendre megközelítik a megadott gyári értékeket, tehát a fenti összefüggés igazoltnak vehető.

<u>Négyzet, kör, ill.</u> <u>hatszög alakú</u> <u>rés diffrakciós</u> <u>képei (ebben</u> <u>a sorrendben):</u>

